These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Optimal signal estimation in neuronal models. Lánský P; Greenwood PE Neural Comput; 2005 Oct; 17(10):2240-57. PubMed ID: 16105224 [TBL] [Abstract][Full Text] [Related]
5. Classification of stationary neuronal activity according to its information rate. Kostal L; Lánský P Network; 2006 Jun; 17(2):193-210. PubMed ID: 16818397 [TBL] [Abstract][Full Text] [Related]
6. Bayesian estimation of stimulus responses in Poisson spike trains. Lehky SR Neural Comput; 2004 Jul; 16(7):1325-43. PubMed ID: 15165392 [TBL] [Abstract][Full Text] [Related]
7. Statistical assessment of time-varying dependency between two neurons. Ventura V; Cai C; Kass RE J Neurophysiol; 2005 Oct; 94(4):2940-7. PubMed ID: 16160097 [TBL] [Abstract][Full Text] [Related]
8. Estimating the temporal interval entropy of neuronal discharge. Reeke GN; Coop AD Neural Comput; 2004 May; 16(5):941-70. PubMed ID: 15070505 [TBL] [Abstract][Full Text] [Related]
9. A Markov model for interspike interval distributions of auditory cortical neurons that do not show periodic firings. Britvina T; Eggermont JJ Biol Cybern; 2007 Feb; 96(2):245-64. PubMed ID: 17082952 [TBL] [Abstract][Full Text] [Related]
10. Similarity of interspike interval distributions and information gain in a stationary neuronal firing. Kostal L; Lansky P Biol Cybern; 2006 Feb; 94(2):157-67. PubMed ID: 16315047 [TBL] [Abstract][Full Text] [Related]
11. Fitting a stochastic spiking model to neuronal current injection data. Shinomoto S Neural Netw; 2010 Aug; 23(6):764-9. PubMed ID: 20478693 [TBL] [Abstract][Full Text] [Related]
13. Gaussian process approach to spiking neurons for inhomogeneous Poisson inputs. Amemori KI; Ishii S Neural Comput; 2001 Dec; 13(12):2763-97. PubMed ID: 11705410 [TBL] [Abstract][Full Text] [Related]
14. A new method of spike modelling and interval analysis. MacGregor DJ; Williams CK; Leng G J Neurosci Methods; 2009 Jan; 176(1):45-56. PubMed ID: 18775452 [TBL] [Abstract][Full Text] [Related]
15. Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Okatan M; Wilson MA; Brown EN Neural Comput; 2005 Sep; 17(9):1927-61. PubMed ID: 15992486 [TBL] [Abstract][Full Text] [Related]
16. Analysis of spike statistics in neuronal systems with continuous attractors or multiple, discrete attractor States. Miller P Neural Comput; 2006 Jun; 18(6):1268-317. PubMed ID: 16764505 [TBL] [Abstract][Full Text] [Related]
17. Local shuffling of spike trains boosts the accuracy of spike train spectral analysis. Rivlin-Etzion M; Ritov Y; Heimer G; Bergman H; Bar-Gad I J Neurophysiol; 2006 May; 95(5):3245-56. PubMed ID: 16407432 [TBL] [Abstract][Full Text] [Related]
18. Measurement of time-dependent changes in the irregularity of neural spiking. Davies RM; Gerstein GL; Baker SN J Neurophysiol; 2006 Aug; 96(2):906-18. PubMed ID: 16554511 [TBL] [Abstract][Full Text] [Related]
19. Maximum likelihood estimation of cascade point-process neural encoding models. Paninski L Network; 2004 Nov; 15(4):243-62. PubMed ID: 15600233 [TBL] [Abstract][Full Text] [Related]
20. Estimating a state-space model from point process observations. Smith AC; Brown EN Neural Comput; 2003 May; 15(5):965-91. PubMed ID: 12803953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]