BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16908425)

  • 21. Thermodynamic Stability Analysis of Tolbutamide Polymorphs and Solubility in Organic Solvents.
    Svärd M; Valavi M; Khamar D; Kuhs M; Rasmuson ÅC
    J Pharm Sci; 2016 Jun; 105(6):1901-1906. PubMed ID: 27238487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of critical process variables affecting particle size following precipitation using a supercritical fluid.
    Sacha GA; Schmitt WJ; Nail SL
    Pharm Dev Technol; 2006; 11(2):187-94. PubMed ID: 16749529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physicochemical evaluation of carbamazepine microparticles produced by the rapid expansion of supercritical solutions and by spray-drying.
    Gosselin P; Lacasse FX; Preda M; Thibert R; Clas SD; McMullen JN
    Pharm Dev Technol; 2003; 8(1):11-20. PubMed ID: 12665193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Terbutaline microparticles suitable for aerosol delivery produced by supercritical assisted atomization.
    Reverchon E; Della Porta G
    Int J Pharm; 2003 Jun; 258(1-2):1-9. PubMed ID: 12753748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation and Characterization of Beclomethasone Dipropionate Nanoparticles Using Rapid Expansion of Supercritical Solution.
    Hosseinpour M; Vatanara A; Zarghami R
    Adv Pharm Bull; 2015 Sep; 5(3):343-9. PubMed ID: 26504756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled Expansion of Supercritical Solution: A Robust Method to Produce Pure Drug Nanoparticles With Narrow Size-Distribution.
    Pessi J; Lassila I; Meriläinen A; Räikkönen H; Hæggström E; Yliruusi J
    J Pharm Sci; 2016 Aug; 105(8):2293-7. PubMed ID: 27368121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS).
    Müllers KC; Paisana M; Wahl MA
    Pharm Res; 2015 Feb; 32(2):702-13. PubMed ID: 25213775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.
    Kalani M; Yunus R
    Int J Nanomedicine; 2012; 7():2165-72. PubMed ID: 22619552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies.
    Rogers TL; Johnston KP; Williams RO
    Drug Dev Ind Pharm; 2001 Nov; 27(10):1003-15. PubMed ID: 11794803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of nanoparticles of Magnolia bark extract by rapid expansion from supercritical solution into aqueous solutions.
    He S; Zhou B; Zhang S; Lei Z; Zhang Z
    J Microencapsul; 2011; 28(3):183-9. PubMed ID: 21425944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmentally benign formation of polymeric microspheres by rapid expansion of supercritical carbon dioxide solution with a nonsolvent.
    Matsuyama K; Mishima K; Umemoto H; Yamaguchi S
    Environ Sci Technol; 2001 Oct; 35(20):4149-55. PubMed ID: 11686380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of Curcuma Longa L. Extract Nanoparticles Using Supercritical Solution Expansion.
    Momenkiaei F; Raofie F
    J Pharm Sci; 2019 Apr; 108(4):1581-1589. PubMed ID: 30439462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved dissolution of an insoluble drug using a 4-fluid nozzle spray-drying technique.
    Chen R; Tagawa M; Hoshi N; Ogura T; Okamoto H; Danjo K
    Chem Pharm Bull (Tokyo); 2004 Sep; 52(9):1066-70. PubMed ID: 15340191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supercritical carbon dioxide solubility measurement and modelling for effective size reduction of nifedipine particles for transdermal application.
    Massias T; de Paiva Lacerda S; Resende de Azevedo J; Letourneau JJ; Bolzinger MA; Espitalier F
    Int J Pharm; 2023 Jan; 630():122425. PubMed ID: 36436744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ optical monitoring of RDX nanoparticles formation during rapid expansion of supercritical CO2 solutions.
    Matsunaga T; Chernyshev AV; Chesnokov EN; Krasnoperov LN
    Phys Chem Chem Phys; 2007 Oct; 9(38):5249-59. PubMed ID: 19459288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A one-pot method to enhance dissolution rate of low solubility drug molecules using dispersion polymerization in supercritical carbon dioxide.
    Galia A; Scialdone O; Filardo G; Spanò T
    Int J Pharm; 2009 Jul; 377(1-2):60-9. PubMed ID: 19439168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Encapsulation of lutein in liposomes using supercritical carbon dioxide.
    Zhao L; Temelli F; Curtis JM; Chen L
    Food Res Int; 2017 Oct; 100(Pt 1):168-179. PubMed ID: 28873676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microencapsulation and characterization of liposomal vesicles using a supercritical fluid process coupled with vacuum-driven cargo loading.
    Tsai WC; Rizvi SSH
    Food Res Int; 2017 Jun; 96():94-102. PubMed ID: 28528112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of Erlotinib hydrochloride nanoparticles (anti-cancer drug) by RESS-C method and investigating the effective parameters.
    Bazaei M; Honarvar B; Esfandiari N; Sajadian SA; Arab Aboosadi Z
    Sci Rep; 2024 Jun; 14(1):14955. PubMed ID: 38942802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transformation under pressure: Discovery of a novel crystalline form of anthelmintic drug Praziquantel using high-pressure supercritical carbon dioxide.
    MacEachern L; Kermanshahi-Pour A; Mirmehrabi M
    Int J Pharm; 2022 May; 619():121723. PubMed ID: 35395364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.