These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 1690908)

  • 41. Characterization of a bioengineered chimeric Na+-nucleoside transporter.
    Wang J; Giacomini KM
    Mol Pharmacol; 1999 Feb; 55(2):234-40. PubMed ID: 9927613
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sequence of a pyrimidine-selective Na+/nucleoside cotransporter from pig kidney, pkCNT1.
    Pajor AM
    Biochim Biophys Acta; 1998 Dec; 1415(1):266-9. PubMed ID: 9858747
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nucleosides are efficiently absorbed by Na(+)-dependent transport across the intestinal brush border membrane in veal calves.
    Theisinger A; Grenacher B; Rech KS; Scharrer E
    J Dairy Sci; 2002 Sep; 85(9):2308-14. PubMed ID: 12362464
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Transport of nitrogen bases and nucleosides in bacteria].
    Gershanovich VN
    Usp Sovrem Biol; 1977; 83(2):226-39. PubMed ID: 408991
    [No Abstract]   [Full Text] [Related]  

  • 45. Kinetic model for phosphate transport in renal brush-border membranes.
    Béliveau R; Strévey J
    Am J Physiol; 1988 Mar; 254(3 Pt 2):F329-36. PubMed ID: 3348412
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stimulatory effect of low ATP pools on transport of purine nucleosides in cells of Escherichia coli.
    Munch-Petersen A; Pihl NJ
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2519-23. PubMed ID: 6446715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carrier-mediated transport systems of tetraethylammonium in rat renal brush-border and basolateral membrane vesicles.
    Takano M; Inui K; Okano T; Saito H; Hori R
    Biochim Biophys Acta; 1984 Jun; 773(1):113-24. PubMed ID: 6733090
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Absorption and intermediary metabolism of purines and pyrimidines in lactating dairy cows.
    Stentoft C; Røjen BA; Jensen SK; Kristensen NB; Vestergaard M; Larsen M
    Br J Nutr; 2015 Feb; 113(4):560-73. PubMed ID: 25619278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Giardia lamblia: uptake of pyrimidine nucleosides.
    Jarroll EL; Hammond MM; Lindmark DG
    Exp Parasitol; 1987 Apr; 63(2):152-6. PubMed ID: 3569473
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential regulation of nucleoside and nucleobase transporters in Crithidia fasciculata and Trypanosoma brucei brucei.
    de Koning HP; Watson CJ; Sutcliffe L; Jarvis SM
    Mol Biochem Parasitol; 2000 Feb; 106(1):93-107. PubMed ID: 10743614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characteristics of Na(+)-dependent intestinal nucleoside transport in the pig.
    Scharrer E; Rech KS; Grenacher B
    J Comp Physiol B; 2002 May; 172(4):309-14. PubMed ID: 12037593
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex.
    Williams TC; Doherty AJ; Griffith DA; Jarvis SM
    Biochem J; 1989 Nov; 264(1):223-31. PubMed ID: 2604712
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relation of ATPases in rat renal brush-border membranes to ATP-driven H+ secretion.
    Turrini F; Sabolić I; Zimolo Z; Moewes B; Burckhardt G
    J Membr Biol; 1989 Jan; 107(1):1-12. PubMed ID: 2537900
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Incorporation of purines and pyrimidines in axenically grown Entamoeba histolytica.
    Booden T; Boonlayangoor P; Albach RA
    J Parasitol; 1976 Aug; 62(4):641-3. PubMed ID: 182949
    [No Abstract]   [Full Text] [Related]  

  • 55. Inhibition of pyrimidine incorporation without inhibition of DNA synthesis.
    Diatloff C; Bengtson A; Macieira-Coelho A
    Cell Biol Int Rep; 1979 May; 3(3):283-92. PubMed ID: 156073
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recombinant purine nucleoside phosphorylases from thermophiles: preparation, properties and activity towards purine and pyrimidine nucleosides.
    Zhou X; Szeker K; Janocha B; Böhme T; Albrecht D; Mikhailopulo IA; Neubauer P
    FEBS J; 2013 Mar; 280(6):1475-90. PubMed ID: 23332162
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural modifications at the 2'- and 3'-positions of some pyrimidine nucleosides as determinants of their interaction with the mouse erythrocyte nucleoside transporter.
    Gati WP; Misra HK; Knaus EE; Wiebe LI
    Biochem Pharmacol; 1984 Nov; 33(21):3325-31. PubMed ID: 6497896
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carrier-mediated transport of cephalexin via the dipeptide transport system in rat renal brush-border membrane vesicles.
    Inui K; Okano T; Takano M; Saito H; Hori R
    Biochim Biophys Acta; 1984 Jan; 769(2):449-54. PubMed ID: 6696892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools.
    Martinussen J; Wadskov-Hansen SL; Hammer K
    J Bacteriol; 2003 Mar; 185(5):1503-8. PubMed ID: 12591866
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin-induced hypoglycemia and recovery.
    Chapman AG; Westerberg E; Siesjö BK
    J Neurochem; 1981 Jan; 36(1):179-89. PubMed ID: 7463044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.