These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 16909573)
1. Effects of the interaction between genetic diversity and UV-B radiation on wood frog fitness. Weyrauch SL; Grubb TC Conserv Biol; 2006 Jun; 20(3):802-10. PubMed ID: 16909573 [TBL] [Abstract][Full Text] [Related]
2. Ambient solar UV radiation causes mortality in larvae of three species of Rana under controlled exposure conditions. Tietge JE; Diamond SA; Ankley GT; DeFoe DL; Holcombe GW; Jensen KM; Degitz SJ; Elonen GE; Hammer E Photochem Photobiol; 2001 Aug; 74(2):261-8. PubMed ID: 11547564 [TBL] [Abstract][Full Text] [Related]
3. Experimental examination of the effects of ultraviolet-B radiation in combination with other stressors on frog larvae. Searle CL; Belden LK; Bancroft BA; Han BA; Biga LM; Blaustein AR Oecologia; 2010 Jan; 162(1):237-45. PubMed ID: 19727829 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the risk of solar ultraviolet radiation to amphibians. I. Dose-dependent induction of hindlimb malformations in the northern leopard frog (Rana pipiens). Ankley GT; Diamond SA; Tietge JE; Holcombe GW; Jensen KM; Defoe DL; Peterson R Environ Sci Technol; 2002 Jul; 36(13):2853-8. PubMed ID: 12144258 [TBL] [Abstract][Full Text] [Related]
5. UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Blaustein AR; Hoffman PD; Hokit DG; Kiesecker JM; Walls SC; Hays JB Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1791-5. PubMed ID: 8127883 [TBL] [Abstract][Full Text] [Related]
6. A meta-analysis of the effects of ultraviolet B radiation and its synergistic interactions with pH, contaminants, and disease on amphibian survival. Bancroft BA; Baker NJ; Blaustein AR Conserv Biol; 2008 Aug; 22(4):987-96. PubMed ID: 18616747 [TBL] [Abstract][Full Text] [Related]
7. Both incubation temperature and posthatching temperature affect swimming performance and morphology of wood frog tadpoles (Rana sylvatica). Watkins TB; Vraspir J Physiol Biochem Zool; 2006; 79(1):140-9. PubMed ID: 16380935 [TBL] [Abstract][Full Text] [Related]
8. Variation in UV sensitivity among common frog Rana temporaria populations along an altitudinal gradient. Marquis O; Miaud C Zoology (Jena); 2008; 111(4):309-17. PubMed ID: 18495447 [TBL] [Abstract][Full Text] [Related]
9. Combined exposure to ambient UVB radiation and nitrite negatively affects survival of amphibian early life stages. Macías G; Marco A; Blaustein AR Sci Total Environ; 2007 Oct; 385(1-3):55-65. PubMed ID: 17628639 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the risk of solar ultraviolet radiation to amphibians. III. Prediction of impacts in selected northern midwestern wetlands. Diamond SA; Peterson GS; Tietge JE; Ankley GT Environ Sci Technol; 2002 Jul; 36(13):2866-74. PubMed ID: 12144260 [TBL] [Abstract][Full Text] [Related]
11. Developmental responses of amphibians to solar and artificial UVB sources: a comparative study. Hays JB; Blaustein AR; Kiesecker JM; Hoffman PD; Pandelova I; Coyle D; Richardson T Photochem Photobiol; 1996 Sep; 64(3):449-56. PubMed ID: 8806225 [TBL] [Abstract][Full Text] [Related]
12. Effects of ultraviolet-B radiation and larval growth on toxicokinetics of waterborne bisphenol A in common frog (Rana temporaria) larvae. Koponen PS; Tuikka A; Kukkonen JV Chemosphere; 2007 Jan; 66(7):1323-8. PubMed ID: 16934853 [TBL] [Abstract][Full Text] [Related]
13. Variation in genotoxic stress tolerance among frog populations exposed to UV and pollutant gradients. Marquis O; Miaud C; Ficetola GF; Boscher A; Mouchet F; Guittonneau S; Devaux A Aquat Toxicol; 2009 Nov; 95(2):152-61. PubMed ID: 19818516 [TBL] [Abstract][Full Text] [Related]
14. Combined effects of UV-B, nitrate, and low pH reduce the survival and activity level of larval cascades frogs (Rana cascadae). Hatch AC; Blaustein AR Arch Environ Contam Toxicol; 2000 Nov; 39(4):494-9. PubMed ID: 11031310 [TBL] [Abstract][Full Text] [Related]
15. Induction of photolyase activity in wood frog (Rana sylvatica) embryos. Smith MA; Kapron CM; Berrill M Photochem Photobiol; 2000 Oct; 72(4):575-8. PubMed ID: 11045732 [TBL] [Abstract][Full Text] [Related]
16. Frog decline, frog malformations, and a comparison of frog and human health. Cohen MM Am J Med Genet; 2001 Nov; 104(2):101-9. PubMed ID: 11746038 [TBL] [Abstract][Full Text] [Related]
17. Legacy of road salt: Apparent positive larval effects counteracted by negative postmetamorphic effects in wood frogs. Dananay KL; Krynak KL; Krynak TJ; Benard MF Environ Toxicol Chem; 2015 Oct; 34(10):2417-24. PubMed ID: 26033303 [TBL] [Abstract][Full Text] [Related]
18. The effects of solar UV-B radiation on embryonic mortality and development in three boreal anurans (Rana temporaria, Rana arvalis and Bufo bufo). Häkkinen J; Pasanen S; Kukkonen JV Chemosphere; 2001 Jul; 44(3):441-6. PubMed ID: 11459149 [TBL] [Abstract][Full Text] [Related]
19. Effects of bisphenol A and artificial UVB radiation on the early development of Rana temporaria. Koponen PS; Kukkonen JV J Toxicol Environ Health A; 2002 Jul; 65(13):947-59. PubMed ID: 12133238 [TBL] [Abstract][Full Text] [Related]
20. The relationship among egg size, density and food level on larval development in the wood frog (Rana sylvatica). Berven KA; Chadra BG Oecologia; 1988 Feb; 75(1):67-72. PubMed ID: 28311835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]