These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16909672)

  • 1. The interplay between climate variability and density dependence in the population viability of Chinook salmon.
    Zabel RW; Scheuerell MD; McClure MM; Williams JG
    Conserv Biol; 2006 Feb; 20(1):190-200. PubMed ID: 16909672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive effects of water diversion and climate change for juvenile chinook salmon in the lemhi river basin (USA.).
    Walters AW; Bartz KK; McClure MM
    Conserv Biol; 2013 Dec; 27(6):1179-89. PubMed ID: 24299084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change threatens Chinook salmon throughout their life cycle.
    Crozier LG; Burke BJ; Chasco BE; Widener DL; Zabel RW
    Commun Biol; 2021 Feb; 4(1):222. PubMed ID: 33603119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signals of large scale climate drivers, hatchery enhancement, and marine factors in Yukon River Chinook salmon survival revealed with a Bayesian life history model.
    Cunningham CJ; Westley PAH; Adkison MD
    Glob Chang Biol; 2018 Sep; 24(9):4399-4416. PubMed ID: 29774975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Watershed-scale climate influences productivity of Chinook salmon populations across southcentral Alaska.
    Jones LA; Schoen ER; Shaftel R; Cunningham CJ; Mauger S; Rinella DJ; St Saviour A
    Glob Chang Biol; 2020 Sep; 26(9):4919-4936. PubMed ID: 32628814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adult spawners: A critical period for subarctic Chinook salmon in a changing climate.
    Howard KG; von Biela V
    Glob Chang Biol; 2023 Apr; 29(7):1759-1773. PubMed ID: 36661402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial variation buffers temporal fluctuations in early juvenile survival for an endangered Pacific salmon.
    Thorson JT; Scheuerell MD; Buhle ER; Copeland T
    J Anim Ecol; 2014 Jan; 83(1):157-67. PubMed ID: 23919254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fish of many scales: extrapolating sublethal pesticide exposures to the productivity of wild salmon populations.
    Baldwin DH; Spromberg JA; Collier TK; Scholz NL
    Ecol Appl; 2009 Dec; 19(8):2004-15. PubMed ID: 20014574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signals of climate, conspecific density, and watershed features in patterns of homing and dispersal by Pacific salmon.
    Westley PA; Dittman AH; Ward EJ; Quinn TP
    Ecology; 2015 Oct; 96(10):2823-33. PubMed ID: 26649402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using hierarchical models to estimate effects of ocean anomalies on north-west Pacific Chinook salmon Oncorhynchus tshawytscha recruitment.
    Sharma R; Liermann M
    J Fish Biol; 2010 Nov; 77(8):1948-63. PubMed ID: 21078100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eco-evolutionary dynamics: fluctuations in population growth rate reduce effective population size in chinook salmon.
    Waples RS; Jensen DW; McClure M
    Ecology; 2010 Mar; 91(3):902-14. PubMed ID: 20426347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relating results of chronic toxicity responses to population-level effects: modeling effects on wild Chinook salmon populations.
    Spromberg JA; Meador JP
    Integr Environ Assess Manag; 2005 Jan; 1(1):9-21. PubMed ID: 16637143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative threat analysis for management of an imperiled species: Chinook salmon (Oncorhynchus tshawytscha).
    Hoekstra JM; Bartz KK; Ruckelshaus MH; Moslemi JM; Harms TK
    Ecol Appl; 2007 Oct; 17(7):2061-73. PubMed ID: 17974341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extinction-effective population index: incorporating life-history variations in population viability analysis.
    Fujiwara M
    Ecology; 2007 Sep; 88(9):2345-53. PubMed ID: 17918411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery and management options for spring/summer chinook salmon in the Columbia River basin.
    Kareiva P; Marvier M; McClure M
    Science; 2000 Nov; 290(5493):977-9. PubMed ID: 11062128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate impacts at multiple scales: evidence for differential population responses in juvenile Chinook salmon.
    Crozier L; Zabel RW
    J Anim Ecol; 2006 Sep; 75(5):1100-9. PubMed ID: 16922845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal dynamics of alternative male phenotypes in coho salmon populations in response to ocean environment.
    Koseki Y; Fleming IA
    J Anim Ecol; 2006 Mar; 75(2):445-55. PubMed ID: 16637997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extinction risk assessment of a Patagonian ungulate using population dynamics models under climate change scenarios.
    Riquelme C; Estay SA; Contreras R; Corti P
    Int J Biometeorol; 2020 Nov; 64(11):1847-1855. PubMed ID: 32734426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interacting effects of density and temperature on body size in multiple populations of Chinook salmon.
    Crozier LG; Zabel RW; Hockersmith EE; Achord S
    J Anim Ecol; 2010 Mar; 79(2):342-9. PubMed ID: 20002859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon.
    Daly EA; Brodeur RD
    PLoS One; 2015; 10(12):e0144066. PubMed ID: 26675673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.