These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 16909847)

  • 1. [Molecular dynamics modeling of the substitution of serine for the conservative glycine in the G loop in the yeast cdc28-srm mutant using the crystalline lattice of human kinase CDK2].
    Kholmurodov KhT; Kretov DA; Gerasimova AS; Koltovaia NA
    Biofizika; 2006; 51(4):679-91. PubMed ID: 16909847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Simulation of kinase CDK2-cyclin A by the molecular dynamics method: effect of Gly16-->Ser16 and Arg274-->Gln274 substitutions on conformation of a kinase subunit].
    Kholmurodov KhT; Koltovaia NA
    Biofizika; 2009; 54(6):999-1004. PubMed ID: 20067177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of phosphorylated Thr160 for the activation of the CDK2/Cyclin A complex.
    De Vivo M; Cavalli A; Bottegoni G; Carloni P; Recanatini M
    Proteins; 2006 Jan; 62(1):89-98. PubMed ID: 16292742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of inhibition of the cyclin-dependent kinase-2 as revealed by the molecular dynamics study on the complex CDK2 with the peptide substrate HHASPRK.
    Bártová I; Otyepka M; Kríz Z; Koca J
    Protein Sci; 2005 Feb; 14(2):445-51. PubMed ID: 15632290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation and inhibition of cyclin-dependent kinase-2 by phosphorylation; a molecular dynamics study reveals the functional importance of the glycine-rich loop.
    Bártová I; Otyepka M; Kríz Z; Koca J
    Protein Sci; 2004 Jun; 13(6):1449-57. PubMed ID: 15133164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative comparison of wild-type and gatekeeper mutant cdk2 for chemical genetic studies with ATP analogues.
    Elphick LM; Lee SE; Child ES; Prasad A; Pignocchi C; Thibaudeau S; Anderson AA; Bonnac L; Gouverneur V; Mann DJ
    Chembiochem; 2009 Jun; 10(9):1519-26. PubMed ID: 19437469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards more accurate pharmacophore modeling: Multicomplex-based comprehensive pharmacophore map and most-frequent-feature pharmacophore model of CDK2.
    Zou J; Xie HZ; Yang SY; Chen JJ; Ren JX; Wei YQ
    J Mol Graph Model; 2008 Nov; 27(4):430-8. PubMed ID: 18786843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential phosphorylation patterns between the Cyclin-A2/CDK2 complex and their monomers.
    Casado-Vela J; Martínez-Torrecuadrada JL; Casal JI
    Protein Expr Purif; 2009 Jul; 66(1):15-21. PubMed ID: 19233286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The activation and inhibition of cyclin-dependent kinase-5 by phosphorylation.
    Zhang B; Tan VB; Lim KM; Tay TE
    Biochemistry; 2007 Sep; 46(38):10841-51. PubMed ID: 17713927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2.
    Li Y; Zhang J; Gao W; Zhang L; Pan Y; Zhang S; Wang Y
    Int J Mol Sci; 2015 Apr; 16(5):9314-40. PubMed ID: 25918937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the determinants of cyclin-dependent kinase 2 and cyclin-dependent kinase 4 inhibitor selectivity.
    Pratt DJ; Bentley J; Jewsbury P; Boyle FT; Endicott JA; Noble ME
    J Med Chem; 2006 Sep; 49(18):5470-7. PubMed ID: 16942020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of the surface interaction properties of the binding sites of CDK2, CDK4, and ERK2.
    Kelly MD; Mancera RL
    ChemMedChem; 2006 Mar; 1(3):366-75. PubMed ID: 16892371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential binding of inhibitors to active and inactive CDK2 provides insights for drug design.
    Kontopidis G; McInnes C; Pandalaneni SR; McNae I; Gibson D; Mezna M; Thomas M; Wood G; Wang S; Walkinshaw MD; Fischer PM
    Chem Biol; 2006 Feb; 13(2):201-11. PubMed ID: 16492568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel computational analysis of ligand-induced conformational changes in the ATP binding sites of cyclin dependent kinases.
    Subramanian J; Sharma S; B-Rao C
    J Med Chem; 2006 Sep; 49(18):5434-41. PubMed ID: 16942017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disordered p27Kip1 exhibits intrinsic structure resembling the Cdk2/cyclin A-bound conformation.
    Sivakolundu SG; Bashford D; Kriwacki RW
    J Mol Biol; 2005 Nov; 353(5):1118-28. PubMed ID: 16214166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipase C delta 1 regulates cell proliferation and cell-cycle progression from G1- to S-phase by control of cyclin E-CDK2 activity.
    Kaproth-Joslin KA; Li X; Reks SE; Kelley GG
    Biochem J; 2008 Nov; 415(3):439-48. PubMed ID: 18588506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of cyclin-dependent kinase inhibitor, CR229, using structurebased drug screening.
    Kim MK; Min J; Choi BY; Lim H; Cho YH; Lee CH
    J Microbiol Biotechnol; 2007 Oct; 17(10):1712-6. PubMed ID: 18156791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First inactive conformation of CK2 alpha, the catalytic subunit of protein kinase CK2.
    Raaf J; Issinger OG; Niefind K
    J Mol Biol; 2009 Mar; 386(5):1212-21. PubMed ID: 19361447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based approaches to improve selectivity: CDK2-GSK3beta binding site analysis.
    Vulpetti A; Crivori P; Cameron A; Bertrand J; Brasca MG; D'Alessio R; Pevarello P
    J Chem Inf Model; 2005; 45(5):1282-90. PubMed ID: 16180905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A flavonoid gossypin binds to cyclin-dependent kinase 2.
    Kim H; Lee E; Kim J; Jung B; Chong Y; Ahn JH; Lim Y
    Bioorg Med Chem Lett; 2008 Jan; 18(2):661-4. PubMed ID: 18063365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.