These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 16910670)
1. Ratiometric fluorescent sensor proteins with subnanomolar affinity for Zn(II) based on copper chaperone domains. van Dongen EM; Dekkers LM; Spijker K; Meijer EW; Klomp LW; Merkx M J Am Chem Soc; 2006 Aug; 128(33):10754-62. PubMed ID: 16910670 [TBL] [Abstract][Full Text] [Related]
2. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117 [TBL] [Abstract][Full Text] [Related]
3. Model peptides based on the binding loop of the copper metallochaperone Atx1: selectivity of the consensus sequence MxCxxC for metal ions Hg(II), Cu(I), Cd(II), Pb(II), and Zn(II). Rousselot-Pailley P; Sénèque O; Lebrun C; Crouzy S; Boturyn D; Dumy P; Ferrand M; Delangle P Inorg Chem; 2006 Jul; 45(14):5510-20. PubMed ID: 16813414 [TBL] [Abstract][Full Text] [Related]
4. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface. Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924 [TBL] [Abstract][Full Text] [Related]
5. Metal-binding characteristics of the amino-terminal domain of ZntA: binding of lead is different compared to cadmium and zinc. Liu J; Stemmler AJ; Fatima J; Mitra B Biochemistry; 2005 Apr; 44(13):5159-67. PubMed ID: 15794653 [TBL] [Abstract][Full Text] [Related]
6. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588 [TBL] [Abstract][Full Text] [Related]
7. Fluorescent imaging of transition metal homeostasis using genetically encoded sensors. Vinkenborg JL; Koay MS; Merkx M Curr Opin Chem Biol; 2010 Apr; 14(2):231-7. PubMed ID: 20036601 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning and characterization of a copper chaperone for copper/zinc superoxide dismutase from the rat. Hiromura M; Chino H; Sonoda T; Sakurai H Biochem Biophys Res Commun; 2000 Aug; 275(2):394-400. PubMed ID: 10964676 [TBL] [Abstract][Full Text] [Related]
9. Copper-transfer mechanism from the human chaperone Atox1 to a metal-binding domain of Wilson disease protein. Rodriguez-Granillo A; Crespo A; Estrin DA; Wittung-Stafshede P J Phys Chem B; 2010 Mar; 114(10):3698-706. PubMed ID: 20166696 [TBL] [Abstract][Full Text] [Related]
10. Coordination of three and four Cu(I) to the alpha- and beta-domain of vertebrate Zn-metallothionein-1, respectively, induces significant structural changes. Dolderer B; Echner H; Beck A; Hartmann HJ; Weser U; Luchinat C; Del Bianco C FEBS J; 2007 May; 274(9):2349-62. PubMed ID: 17403038 [TBL] [Abstract][Full Text] [Related]
11. Interaction of rac-[Cu(diimine)3]2+ and rac-[Zn(diimine)3]2+ complexes with CT DNA: effect of fluxional Cu(II) geometry on DNA binding, ligand-promoted exciton coupling and prominent DNA cleavage. Ramakrishnan S; Palaniandavar M Dalton Trans; 2008 Aug; (29):3866-78. PubMed ID: 18629409 [TBL] [Abstract][Full Text] [Related]
12. Kinetic analysis of metal binding to the amino-terminal domain of ZntA by monitoring metal-thiolate charge-transfer complexes. Dutta SJ; Liu J; Mitra B Biochemistry; 2005 Nov; 44(43):14268-74. PubMed ID: 16245943 [TBL] [Abstract][Full Text] [Related]
13. T versus D in the MTCXXC motif of copper transport proteins plays a role in directional metal transport. Niemiec MS; Dingeldein AP; Wittung-Stafshede P J Biol Inorg Chem; 2014 Aug; 19(6):1037-47. PubMed ID: 24824562 [TBL] [Abstract][Full Text] [Related]
14. Lysine-60 in copper chaperone Atox1 plays an essential role in adduct formation with a target Wilson disease domain. Hussain F; Rodriguez-Granillo A; Wittung-Stafshede P J Am Chem Soc; 2009 Nov; 131(45):16371-3. PubMed ID: 19863064 [TBL] [Abstract][Full Text] [Related]
15. Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras. Evers TH; Appelhof MA; de Graaf-Heuvelmans PT; Meijer EW; Merkx M J Mol Biol; 2007 Nov; 374(2):411-25. PubMed ID: 17936298 [TBL] [Abstract][Full Text] [Related]
16. Complex formation processes of terminally protected peptides containing two or three histidyl residues. Characterization of the mixed metal complexes of peptides. Rajković S; Kállay C; Serényi R; Malandrinos G; Hadjiliadis N; Sanna D; Sóvágó I Dalton Trans; 2008 Oct; (37):5059-71. PubMed ID: 18802621 [TBL] [Abstract][Full Text] [Related]
17. Unprecedented binding cooperativity between Cu(I) and Cu(II) in the copper resistance protein CopK from Cupriavidus metallidurans CH34: implications from structural studies by NMR spectroscopy and X-ray crystallography. Chong LX; Ash MR; Maher MJ; Hinds MG; Xiao Z; Wedd AG J Am Chem Soc; 2009 Mar; 131(10):3549-64. PubMed ID: 19236095 [TBL] [Abstract][Full Text] [Related]
18. Avian sulfhydryl oxidase is not a metalloenzyme: adventitious binding of divalent metal ions to the enzyme. Brohawn SG; Miksa IR; Thorpe C Biochemistry; 2003 Sep; 42(37):11074-82. PubMed ID: 12974644 [TBL] [Abstract][Full Text] [Related]
19. Molecular modeling of zinc and copper binding with Alzheimer's amyloid beta-peptide. Han D; Wang H; Yang P Biometals; 2008 Apr; 21(2):189-96. PubMed ID: 17629774 [TBL] [Abstract][Full Text] [Related]
20. Binding of zinc(II) and copper(II) to the full-length Alzheimer's amyloid-beta peptide. Tõugu V; Karafin A; Palumaa P J Neurochem; 2008 Mar; 104(5):1249-59. PubMed ID: 18289347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]