These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16910733)

  • 41. Acid-induced gelation of enzymatically modified, preheated whey proteins.
    Eissa AS; Khan SA
    J Agric Food Chem; 2005 Jun; 53(12):5010-7. PubMed ID: 15941349
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of temperature and salt concentration on rheological behavior of whey protein isolate-starch mixed dispersions.
    Ravindra P; Chan ES; Reddy KU
    Int J Food Sci Nutr; 2007 Nov; 58(7):542-7. PubMed ID: 17852467
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Some rheological properties of sodium caseinate-starch gels.
    Bertolini AC; Creamer LK; Eppink M; Boland M
    J Agric Food Chem; 2005 Mar; 53(6):2248-54. PubMed ID: 15769164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contribution of the starch, protein, and lipid fractions to the physical, thermal, and structural properties of amaranth (Amaranthus caudatus) flour films.
    Tapia-Blácido D; Mauri AN; Menegalli FC; Sobral PJ; Añón MC
    J Food Sci; 2007 Jun; 72(5):E293-300. PubMed ID: 17995729
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of the heat-induced whey protein/kappa-casein complexes in the formation of acid milk gels: a kinetic study using rheology and confocal microscopy.
    Guyomarc'h F; Jemin M; Le Tilly V; Madec MN; Famelart MH
    J Agric Food Chem; 2009 Jul; 57(13):5910-7. PubMed ID: 19534462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drying kinetics of calcium caseinate.
    Kozempel M; McAloon AJ; Tomasula PM
    J Agric Food Chem; 2003 Jan; 51(3):773-6. PubMed ID: 12537456
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Properties of milk protein gels formed by phosphates.
    Mizuno R; Lucey JA
    J Dairy Sci; 2007 Oct; 90(10):4524-31. PubMed ID: 17881673
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel technique for differentiation of proteins in the development of acid gel structure from control and heat treated milk using confocal scanning laser microscopy.
    Dubert-Ferrandon A; Niranjan K; Grandison AS
    J Dairy Res; 2006 Nov; 73(4):423-30. PubMed ID: 16834815
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Foams prepared from whey protein isolate and egg white protein: 2. Changes associated with angel food cake functionality.
    Berry TK; Yang X; Foegeding EA
    J Food Sci; 2009 Jun; 74(5):E269-77. PubMed ID: 19646042
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of gamma radiation on low density polyethylene (LDPE) films: optical, dielectric and FTIR studies.
    Moez AA; Aly SS; Elshaer YH
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():203-7. PubMed ID: 22481176
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Whey protein-polysaccharide blended edible film formation and barrier, tensile, thermal and transparency properties.
    Yoo S; Krochta JM
    J Sci Food Agric; 2011 Nov; 91(14):2628-36. PubMed ID: 21717463
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alkali cold gelation of whey proteins. Part I: sol-gel-sol(-gel) transitions.
    Mercadé-Prieto R; Gunasekaran S
    Langmuir; 2009 May; 25(10):5785-92. PubMed ID: 19432494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polymerization and gelation of whey protein isolates at low pH using transglutaminase enzyme.
    Eissa AS; Bisram S; Khan SA
    J Agric Food Chem; 2004 Jul; 52(14):4456-64. PubMed ID: 15237952
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.
    Chytiri SD; Badeka AV; Riganakos KA; Kontominas MG
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Apr; 27(4):546-56. PubMed ID: 20127544
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of biodegradable films from whey proteins by cross-linking and entrapment in cellulose.
    Le Tien C; Letendre M; Ispas-Szabo P; Mateescu MA; Delmas-Patterson G; Yu HL; Lacroix M
    J Agric Food Chem; 2000 Nov; 48(11):5566-75. PubMed ID: 11087520
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of polyols on the stability of whey proteins in intermediate-moisture food model systems.
    Liu X; Zhou P; Tran A; Labuza TP
    J Agric Food Chem; 2009 Mar; 57(6):2339-45. PubMed ID: 19231894
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular description of the formation and structure of plasticized globular protein films.
    Lefèvre T; Subirade M; Pézolet M
    Biomacromolecules; 2005; 6(6):3209-19. PubMed ID: 16283748
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of biodegradable films obtained from cysteine-mediated polymerized gliadins.
    Hernandez-Munoz P; Kanavouras A; Villalobos R; Chiralt A
    J Agric Food Chem; 2004 Dec; 52(26):7897-904. PubMed ID: 15612773
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Importance of intrinsic properties of dense caseinate dispersions for structure formation.
    Manski JM; van Riemsdijk LE; van der Goot AJ; Boom RM
    Biomacromolecules; 2007 Nov; 8(11):3540-7. PubMed ID: 17929972
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formaldehyde cross-linking of gliadin films: effects on mechanical and water barrier properties.
    Hernández-Muñoz P; López-Rubio A; Lagarón JM; Gavara R
    Biomacromolecules; 2004; 5(2):415-21. PubMed ID: 15003001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.