BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16911031)

  • 1. Frequent lapses of responsiveness during an extended visuomotor tracking task in non-sleep-deprived subjects.
    Peiris MT; Jones RD; Davidson PR; Carroll GJ; Bones PJ
    J Sleep Res; 2006 Sep; 15(3):291-300. PubMed ID: 16911031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-based lapse detection with high temporal resolution.
    Davidson PR; Jones RD; Peiris MT
    IEEE Trans Biomed Eng; 2007 May; 54(5):832-9. PubMed ID: 17518279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of lapses in responsiveness from the EEG.
    Peiris MT; Davidson PR; Bones PJ; Jones RD
    J Neural Eng; 2011 Feb; 8(1):016003. PubMed ID: 21248381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG spectral power and cognitive performance during sleep inertia: the effect of normal sleep duration and partial sleep deprivation.
    Tassi P; Bonnefond A; Engasser O; Hoeft A; Eschenlauer R; Muzet A
    Physiol Behav; 2006 Jan; 87(1):177-84. PubMed ID: 16303153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tonic and phasic electroencephalographic dynamics during continuous compensatory tracking.
    Huang RS; Jung TP; Delorme A; Makeig S
    Neuroimage; 2008 Feb; 39(4):1896-909. PubMed ID: 18083601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Event-based detection of lapses of responsiveness.
    Peiris MT; Jones RD; Davidson PR; Bones PJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4960-3. PubMed ID: 19163830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heart rate variability during sedentary work and sleep in normal and sleep-deprived states.
    van den Berg J; Neely G; Wiklund U; Landström U
    Clin Physiol Funct Imaging; 2005 Jan; 25(1):51-7. PubMed ID: 15659081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and regular patterns of nighttime sleep are related to increased vulnerability to microsleeps following a single night of sleep restriction.
    Innes CR; Poudel GR; Jones RD
    Chronobiol Int; 2013 Nov; 30(9):1187-96. PubMed ID: 23998288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of driving duration and partial sleep deprivation on subsequent alertness and performance of car drivers.
    Otmani S; Pebayle T; Roge J; Muzet A
    Physiol Behav; 2005 Apr; 84(5):715-24. PubMed ID: 15885247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lapses of responsiveness: Characteristics, detection, and underlying mechanisms.
    Jones RD; Poudel GR; Innes CR; Davidson PR; Peiris MT; Malla AM; Signal T; Carroll GJ; Watts R; Bones PJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1788-91. PubMed ID: 21095933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of nocturnal slow-wave activity affects daytime vigilance lapses and memory encoding but not reaction time or implicit learning.
    Van Der Werf YD; Altena E; Vis JC; Koene T; Van Someren EJ
    Prog Brain Res; 2011; 193():245-55. PubMed ID: 21854967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nocturnal sustained attention during sleep deprivation can be predicted by specific periods of subjective daytime alertness in normal young humans.
    Taillard J; Moore N; Claustrat B; Coste O; Bioulac B; Philip P
    J Sleep Res; 2006 Mar; 15(1):41-5. PubMed ID: 16490001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the Karolinska sleepiness scale against performance and EEG variables.
    Kaida K; Takahashi M; Akerstedt T; Nakata A; Otsuka Y; Haratani T; Fukasawa K
    Clin Neurophysiol; 2006 Jul; 117(7):1574-81. PubMed ID: 16679057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of sleep loss in a combined tracking and time estimation task.
    Bohnen HG; Gaillard AW
    Ergonomics; 1994 Jun; 37(6):1021-30. PubMed ID: 8026449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of sleep duration and subject intelligence on declarative and motor memory performance: how much is enough?
    Tucker MA; Fishbein W
    J Sleep Res; 2009 Sep; 18(3):304-12. PubMed ID: 19702788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep inertia: performance changes after sleep, rest and active waking.
    Hofer-Tinguely G; Achermann P; Landolt HP; Regel SJ; Rétey JV; Dürr R; Borbély AA; Gottselig JM
    Brain Res Cogn Brain Res; 2005 Mar; 22(3):323-31. PubMed ID: 15722204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sharp and sleepy: evidence for dissociation between sleep pressure and nocturnal performance.
    Galliaud E; Taillard J; Sagaspe P; Valtat C; Bioulac B; Philip P
    J Sleep Res; 2008 Mar; 17(1):11-5. PubMed ID: 18275550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased cerebral activity during microsleeps reflects an unconscious drive to re-establish consciousness.
    Zaky MH; Shoorangiz R; Poudel GR; Yang L; Innes CRH; Jones RD
    Int J Psychophysiol; 2023 Jul; 189():57-65. PubMed ID: 37192708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents.
    Papadelis C; Chen Z; Kourtidou-Papadeli C; Bamidis PD; Chouvarda I; Bekiaris E; Maglaveras N
    Clin Neurophysiol; 2007 Sep; 118(9):1906-22. PubMed ID: 17652020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interdependency between heart rate variability and sleep EEG: linear/non-linear?
    Dumont M; Jurysta F; Lanquart JP; Migeotte PF; van de Borne P; Linkowski P
    Clin Neurophysiol; 2004 Sep; 115(9):2031-40. PubMed ID: 15294205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.