These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16911077)

  • 1. Linear least-squares fit evaluation of series of analytical spectra from planar defects: extension and possible implementations in scanning transmission electron microscopy.
    Walther T
    J Microsc; 2006 Aug; 223(Pt 2):165-70. PubMed ID: 16911077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a new analytical electron microscopy technique to quantify the chemistry of planar defects and to measure accurately solute segregation to grain boundaries.
    Walther T
    J Microsc; 2004 Aug; 215(Pt 2):191-202. PubMed ID: 15315506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focused ion beam preparation of atom probe specimens containing a single crystallographically well-defined grain boundary.
    Pérez-Willard F; Wolde-Giorgis D; Al-Kassab T; López GA; Mittemeijer EJ; Kirchheim R; Gerthsen D
    Micron; 2008; 39(1):45-52. PubMed ID: 17331735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the linear attenuation range of electron transmission through film specimens.
    Wang F; Zhang HB; Cao M; Nishi R; Takaoka A
    Micron; 2010 Oct; 41(7):769-74. PubMed ID: 20558075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy.
    Erni R; Browning ND
    Ultramicroscopy; 2005 Oct; 104(3-4):176-92. PubMed ID: 15885909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new analytical method for characterising the bonding environment at rough interfaces in high-k gate stacks using electron energy loss spectroscopy.
    Mendis BG; Mackenzie M; Craven AJ
    Ultramicroscopy; 2010 Jan; 110(2):105-17. PubMed ID: 19875234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TEM foil preparation of sub-micrometre sized individual grains by focused ion beam technique.
    Holzapfel C; Soldera F; Vollmer C; Hoppe P; Mücklich F
    J Microsc; 2009 Jul; 235(1):59-66. PubMed ID: 19566627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting physically interpretable data from electron energy-loss spectra.
    Witte C; Zaluzec NJ; Allen LJ
    Ultramicroscopy; 2010 Oct; 110(11):1390-6. PubMed ID: 20650565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the focused ion beam technique in aerosol science: detailed investigation of selected, airborne particles.
    Kaegi R; Gasser P
    J Microsc; 2006 Nov; 224(Pt 2):140-5. PubMed ID: 17204060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of recent advances in spectrum imaging and its extension to reciprocal space.
    Maigné A; Twesten RD
    J Electron Microsc (Tokyo); 2009 Jun; 58(3):99-109. PubMed ID: 19398780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical electron microscopy studies of lithium aluminum hydrides with Ti- and V-based additives.
    Andrei CM; Walmsley JC; Brinks HW; Holmestad R; Blanchard D; Hauback BC; Botton GA
    J Phys Chem B; 2005 Mar; 109(10):4350-6. PubMed ID: 16851501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional and 3-dimensional analysis of bone/dental implant interfaces with the use of focused ion beam and electron microscopy.
    Giannuzzi LA; Phifer D; Giannuzzi NJ; Capuano MJ
    J Oral Maxillofac Surg; 2007 Apr; 65(4):737-47. PubMed ID: 17368372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proposal for dichroic experiments in the electron microscope.
    Hébert C; Schattschneider P
    Ultramicroscopy; 2003 Sep; 96(3-4):463-8. PubMed ID: 12871808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The new X-ray mapping: X-ray spectrum imaging above 100 kHz output count rate with the silicon drift detector.
    Newbury DE
    Microsc Microanal; 2006 Feb; 12(1):26-35. PubMed ID: 17481339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of transmission and reflection modalities for measuring content uniformity of pharmaceutical tablets with near-infrared spectroscopy.
    Xiang D; LoBrutto R; Cheney J; Wabuyele BW; Berry J; Lyon R; Wu H; Khan MA; Hussain AS
    Appl Spectrosc; 2009 Jan; 63(1):33-47. PubMed ID: 19146717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of impurities in ice.
    Cullen D; Baker I
    Microsc Res Tech; 2001 Nov; 55(3):198-207. PubMed ID: 11747095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CBED and LACBED characterization of crystal defects.
    Morniroli JP
    J Microsc; 2006 Sep; 223(Pt 3):240-5. PubMed ID: 17059540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron energy-loss spectroscopic profiling of thin film structures: 0.39 nm line resolution and 0.04 eV precision measurement of near-edge structure shifts at interfaces.
    Walther T
    Ultramicroscopy; 2003 Sep; 96(3-4):401-11. PubMed ID: 12871804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope.
    Yakovlev S; Libera M
    Micron; 2008 Aug; 39(6):734-40. PubMed ID: 18096395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative energy dispersive X-ray microanalysis of electron beam-sensitive alloyed nanoparticles.
    Braidy N; Jakubek ZJ; Simard B; Botton GA
    Microsc Microanal; 2008 Apr; 14(2):166-75. PubMed ID: 18312719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.