BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16911521)

  • 1. Three mammalian cytochromes b561 are ascorbate-dependent ferrireductases.
    Su D; Asard H
    FEBS J; 2006 Aug; 273(16):3722-34. PubMed ID: 16911521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Arabidopsis cytochrome b561 with trans-membrane ferrireductase capability.
    Bérczi A; Su D; Asard H
    FEBS Lett; 2007 Apr; 581(7):1505-8. PubMed ID: 17376442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous expression and site-directed mutagenesis of an ascorbate-reducible cytochrome b561.
    Bérczi A; Su D; Lakshminarasimhan M; Vargas A; Asard H
    Arch Biochem Biophys; 2005 Nov; 443(1-2):82-92. PubMed ID: 16256064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of the conserved lysine 83 residue of Zea mays cytochrome b(561) for ascorbate-specific transmembrane electron transfer as revealed by site-directed mutagenesis studies.
    Nakanishi N; Rahman MM; Sakamoto Y; Takigami T; Kobayashi K; Hori H; Hase T; Park SY; Tsubaki M
    Biochemistry; 2009 Nov; 48(44):10665-78. PubMed ID: 19803484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cytochrome b561 with ferric reductase activity from the parasitic blood fluke, Schistosoma japonicum.
    Glanfield A; McManus DP; Smyth DJ; Lovas EM; Loukas A; Gobert GN; Jones MK
    PLoS Negl Trop Dis; 2010 Nov; 4(11):e884. PubMed ID: 21103361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histidine cycle mechanism for the concerted proton/electron transfer from ascorbate to the cytosolic haem b centre of cytochrome b561: a unique machinery for the biological transmembrane electron transfer.
    Nakanishi N; Takeuchi F; Tsubaki M
    J Biochem; 2007 Nov; 142(5):553-60. PubMed ID: 17905810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of electron acceptance from ascorbate by the specific N-carbethoxylations of maize cytochrome b561: a common mechanism for the transmembrane electron transfer in cytochrome b561 protein family.
    Nakanishi N; Rahman MM; Sakamoto Y; Miura M; Takeuchi F; Park SY; Tsubaki M
    J Biochem; 2009 Dec; 146(6):857-66. PubMed ID: 19762344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of human duodenal cytochrome b (Cybrd1): Redox properties in relation to iron and ascorbate metabolism.
    Oakhill JS; Marritt SJ; Gareta EG; Cammack R; McKie AT
    Biochim Biophys Acta; 2008 Mar; 1777(3):260-8. PubMed ID: 18194661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ascorbate-reducible cytochrome b561 is localized in macrophage lysosomes.
    Zhang DL; Su D; Bérczi A; Vargas A; Asard H
    Biochim Biophys Acta; 2006 Dec; 1760(12):1903-13. PubMed ID: 16996694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of conserved Arg(72) and Tyr(71) in the ascorbate-specific transmembrane electron transfer catalyzed by Zea mays cytochrome b561.
    Rahman MM; Nakanishi N; Sakamoto Y; Hori H; Hase T; Park SY; Tsubaki M
    J Biosci Bioeng; 2013 May; 115(5):497-506. PubMed ID: 23290447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an ascorbate-dependent cytochrome b of the tonoplast membrane sharing biochemical features with members of the cytochrome b561 family.
    Preger V; Scagliarini S; Pupillo P; Trost P
    Planta; 2005 Jan; 220(3):365-75. PubMed ID: 15365836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stopped-flow analyses on the reaction of ascorbate with cytochrome b561 purified from bovine chromaffin vesicle membranes.
    Takigami T; Takeuchi F; Nakagawa M; Hase T; Tsubaki M
    Biochemistry; 2003 Jul; 42(27):8110-8. PubMed ID: 12846560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure prediction for the di-heme cytochrome b561 protein family.
    Bashtovyy D; Bérczi A; Asard H; Páli T
    Protoplasma; 2003 May; 221(1-2):31-40. PubMed ID: 12768339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro.
    Wyman S; Simpson RJ; McKie AT; Sharp PA
    FEBS Lett; 2008 Jun; 582(13):1901-6. PubMed ID: 18498772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer reactions of candidate tumor suppressor 101F6 protein, a cytochrome b561 homologue, with ascorbate and monodehydroascorbate radical.
    Recuenco MC; Rahman MM; Takeuchi F; Kobayashi K; Tsubaki M
    Biochemistry; 2013 May; 52(21):3660-8. PubMed ID: 23641721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots.
    Zaharieva TB; Abadía J
    Protoplasma; 2003 Jun; 221(3-4):269-75. PubMed ID: 12802634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of bovine adrenal cytochrome b561 expressed in insect and yeast cell systems.
    Liu W; Kamensky Y; Kakkar R; Foley E; Kulmacz RJ; Palmer G
    Protein Expr Purif; 2005 Apr; 40(2):429-39. PubMed ID: 15766887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the structural basis for assembly of a transmembrane cytochrome.
    Prodöhl A; Volkmer T; Finger C; Schneider D
    J Mol Biol; 2005 Jul; 350(4):744-56. PubMed ID: 15950240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant expression and initial characterization of the putative human enteric ferric reductase Dcytb.
    Ludwiczek S; Rosell FI; Ludwiczek ML; Mauk AG
    Biochemistry; 2008 Jan; 47(2):753-61. PubMed ID: 18092813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing the complementation of ferredoxin by cytochrome b (5) in the Spirulina- (6)-desaturation reaction by N-terminal fusion and co-expression of the fungal-cytochrome b (5) domain and Spirulina- (6)-acyl-lipid desaturase.
    Hongsthong A; Subudhi S; Sirijuntarut M; Kurdrid P; Cheevadhanarak S; Tanticharoen M
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1192-201. PubMed ID: 16575563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.