These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 16911784)
21. Functional evolution of the yeast protein interaction network. Kunin V; Pereira-Leal JB; Ouzounis CA Mol Biol Evol; 2004 Jul; 21(7):1171-6. PubMed ID: 15071090 [TBL] [Abstract][Full Text] [Related]
22. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex. Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406 [TBL] [Abstract][Full Text] [Related]
23. A single determinant dominates the rate of yeast protein evolution. Drummond DA; Raval A; Wilke CO Mol Biol Evol; 2006 Feb; 23(2):327-37. PubMed ID: 16237209 [TBL] [Abstract][Full Text] [Related]
24. Expression and evolution of the non-canonically translated yeast mitochondrial acetyl-CoA carboxylase Hfa1p. Suomi F; Menger KE; Monteuuis G; Naumann U; Kursu VA; Shvetsova A; Kastaniotis AJ PLoS One; 2014; 9(12):e114738. PubMed ID: 25503745 [TBL] [Abstract][Full Text] [Related]
25. Ammodytoxin, a secretory phospholipase A2, inhibits G2 cell-cycle arrest in the yeast Saccharomyces cerevisiae. Petrovic U; Sribar J; Matis M; Anderluh G; Peter-Katalinić J; Krizaj I; Gubensek F Biochem J; 2005 Oct; 391(Pt 2):383-8. PubMed ID: 16008522 [TBL] [Abstract][Full Text] [Related]
26. Evolutionary rate heterogeneity of core and attachment proteins in yeast protein complexes. Chakraborty S; Ghosh TC Genome Biol Evol; 2013; 5(7):1366-75. PubMed ID: 23814130 [TBL] [Abstract][Full Text] [Related]
27. Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. Berg J; Lässig M; Wagner A BMC Evol Biol; 2004 Nov; 4():51. PubMed ID: 15566577 [TBL] [Abstract][Full Text] [Related]
28. The functioning of mammalian ClC-2 chloride channel in Saccharomyces cerevisiae cells requires an increased level of Kha1p. Flis K; Hinzpeter A; Edelman A; Kurlandzka A Biochem J; 2005 Sep; 390(Pt 3):655-64. PubMed ID: 15926887 [TBL] [Abstract][Full Text] [Related]
29. Gene duplication and the evolution of ribosomal protein gene regulation in yeast. Wapinski I; Pfiffner J; French C; Socha A; Thompson DA; Regev A Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5505-10. PubMed ID: 20212107 [TBL] [Abstract][Full Text] [Related]
30. Identification of an evolutionary conserved SURF-6 domain in a family of nucleolar proteins extending from human to yeast. Polzikov M; Zatsepina O; Magoulas C Biochem Biophys Res Commun; 2005 Feb; 327(1):143-9. PubMed ID: 15629442 [TBL] [Abstract][Full Text] [Related]
31. Proportion of solvent-exposed amino acids in a protein and rate of protein evolution. Lin YS; Hsu WL; Hwang JK; Li WH Mol Biol Evol; 2007 Apr; 24(4):1005-11. PubMed ID: 17264066 [TBL] [Abstract][Full Text] [Related]
33. Genome-wide analysis of coding DNA and amino acid variation in Saccharomyces cerevisiae. Tan H; Wang J; Yang F; Zhao ZK Yeast; 2008 Jan; 25(1):29-39. PubMed ID: 17914746 [TBL] [Abstract][Full Text] [Related]
34. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Fromont-Racine M; Rain JC; Legrain P Nat Genet; 1997 Jul; 16(3):277-82. PubMed ID: 9207794 [TBL] [Abstract][Full Text] [Related]
35. Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5. Meyer PA; Li S; Zhang M; Yamada K; Takagi Y; Hartzog GA; Fu J Mol Cell Biol; 2015 Oct; 35(19):3354-69. PubMed ID: 26217010 [TBL] [Abstract][Full Text] [Related]
36. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae. Du Z; Valtierra S; Li L Prion; 2014; 8(6):387-92. PubMed ID: 25517561 [TBL] [Abstract][Full Text] [Related]
37. Computational architecture of the yeast regulatory network. Maslov S; Sneppen K Phys Biol; 2005 Nov; 2(4):S94-100. PubMed ID: 16280626 [TBL] [Abstract][Full Text] [Related]
38. Genome-scale gene function prediction using multiple sources of high-throughput data in yeast Saccharomyces cerevisiae. Joshi T; Chen Y; Becker JM; Alexandrov N; Xu D OMICS; 2004; 8(4):322-33. PubMed ID: 15703479 [TBL] [Abstract][Full Text] [Related]
39. Short transmembrane domains with high-volume exoplasmic halves determine retention of Type II membrane proteins in the Golgi complex. Quiroga R; Trenchi A; González Montoro A; Valdez Taubas J; Maccioni HJ J Cell Sci; 2013 Dec; 126(Pt 23):5344-9. PubMed ID: 24105265 [TBL] [Abstract][Full Text] [Related]
40. Characterizing selective pressures on the pathway for de novo biosynthesis of pyrimidines in yeast. Hermansen RA; Mannakee BK; Knecht W; Liberles DA; Gutenkunst RN BMC Evol Biol; 2015 Oct; 15():232. PubMed ID: 26511837 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]