These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 16912066)

  • 1. Acute increases of renal medullary osmolality stimulate endothelin release from the kidney.
    Boesen EI; Pollock DM
    Am J Physiol Renal Physiol; 2007 Jan; 292(1):F185-91. PubMed ID: 16912066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative role of ETA and ETB receptors in mediating the diuretic response to intramedullary hyperosmotic NaCl infusion.
    Boesen EI; Pollock DM
    Am J Physiol Renal Physiol; 2010 Dec; 299(6):F1424-32. PubMed ID: 20844020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats.
    Gohar EY; Speed JS; Kasztan M; Jin C; Pollock DM
    Am J Physiol Renal Physiol; 2016 Aug; 311(2):F260-7. PubMed ID: 27226106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-salt diet stimulates thick ascending limb eNOS expression by raising medullary osmolality and increasing release of endothelin-1.
    Herrera M; Garvin JL
    Am J Physiol Renal Physiol; 2005 Jan; 288(1):F58-64. PubMed ID: 15353403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low NaCl intake elevates renal medullary endothelin-1 and endothelin A (ETA) receptor mRNA but not the sensitivity of renal Na+ excretion to ETA receptor blockade in rats.
    Klinger F; Grimm R; Steinbach A; Tanneberger M; Kunert-Keil C; Rettig R; Grisk O
    Acta Physiol (Oxf); 2008 Mar; 192(3):429-42. PubMed ID: 17892519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmolar regulation of endothelin-1 production by rat inner medullary collecting duct.
    Kohan DE; Padilla E
    J Clin Invest; 1993 Mar; 91(3):1235-40. PubMed ID: 8450052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperosmotic mannitol activates basolateral NHE in proximal tubule from P-glycoprotein null mice.
    Miyata Y; Asano Y; Muto S
    Am J Physiol Renal Physiol; 2002 Apr; 282(4):F718-29. PubMed ID: 11880334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperosmolality stimulates Na-K-ATPase gene expression in inner medullary collecting duct cells.
    Ohtaka A; Muto S; Nemoto J; Kawakami K; Nagano K; Asano Y
    Am J Physiol; 1996 May; 270(5 Pt 2):F728-38. PubMed ID: 8928833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hyperosmolality on calcium mobilization in renal inner medulla: relationship to alterations in prostaglandin E synthesis.
    Craven PA; Studer RK; DeRubertis FR
    J Lab Clin Med; 1982 Jun; 99(6):806-15. PubMed ID: 6804583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ovariectomy uncovers purinergic receptor activation of endothelin-dependent natriuresis.
    Gohar EY; Kasztan M; Becker BK; Speed JS; Pollock DM
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F361-F369. PubMed ID: 28468962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelin B receptor antagonism in the rat renal medulla reduces urine flow rate and sodium excretion.
    Guo X; Yang T
    Exp Biol Med (Maywood); 2006 Jun; 231(6):1001-5. PubMed ID: 16741038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-dependent action of osmolality on adenosine 3',5'-monophosphate accumulation in rat renal inner medulla: evidence for a relationship to calcium-responsive arachidonate release and prostaglandin synthesis.
    Craven PA; Briggs R; DeRubertis FR
    J Clin Invest; 1980 Feb; 65(2):529-42. PubMed ID: 6243313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial dysfunction is an early event in high-NaCl-induced apoptosis of mIMCD3 cells.
    Michea L; Combs C; Andrews P; Dmitrieva N; Burg MB
    Am J Physiol Renal Physiol; 2002 Jun; 282(6):F981-90. PubMed ID: 11997314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate of increase of osmolality determines osmotic tolerance of mouse inner medullary epithelial cells.
    Cai Q; Michea L; Andrews P; Zhang Z; Rocha G; Dmitrieva N; Burg MB
    Am J Physiol Renal Physiol; 2002 Oct; 283(4):F792-8. PubMed ID: 12217871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperosmotic urea activates basolateral NHE in proximal tubule from P-gp null and wild-type mice.
    Miyata Y; Asano Y; Muto S
    Am J Physiol Renal Physiol; 2002 Oct; 283(4):F771-83. PubMed ID: 12217869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of osmolality on phosphoinositide hydrolysis in renal medulla.
    Garg LC; Kapturczak E; McArdle S
    J Pharmacol Exp Ther; 1988 Nov; 247(2):495-501. PubMed ID: 2846822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelin synthesis by porcine inner medullary collecting duct cells. Effects of hormonal and osmotic stimuli.
    Migas I; Bäcker A; Meyer-Lehnert H; Kramer HJ
    Am J Hypertens; 1995 Jul; 8(7):748-52. PubMed ID: 7546502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proof of principle: hydration by low-osmolar mannitol-glucose solution alleviates undesirable renal effects of an iso-osmolar contrast medium in rats.
    Seeliger E; Ladwig M; Sargsyan L; Cantow K; Persson PB; Flemming B
    Invest Radiol; 2012 Apr; 47(4):240-6. PubMed ID: 22353855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperosmolality regulates endothelin release by Madin-Darby canine kidney cells.
    Schramek H; Gstraunthaler G; Willinger CC; Pfaller W
    J Am Soc Nephrol; 1993 Aug; 4(2):206-13. PubMed ID: 8400084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of impaired urinary diluting capacity in glucocorticoid deficiency.
    Wang W; Li C; Summer SN; Falk S; Cadnapaphornchai MA; Chen YC; Schrier RW
    Am J Physiol Renal Physiol; 2006 May; 290(5):F1135-42. PubMed ID: 16352742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.