BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 16912080)

  • 1. Mechanism of polarized protrusion formation on neuronal precursors migrating in the developing chicken cerebellum.
    Sakakibara A; Horwitz AF
    J Cell Sci; 2006 Sep; 119(Pt 17):3583-92. PubMed ID: 16912080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field.
    Rajnicek AM; Foubister LE; McCaig CD
    J Cell Sci; 2006 May; 119(Pt 9):1723-35. PubMed ID: 16595546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways.
    Cau J; Hall A
    J Cell Sci; 2005 Jun; 118(Pt 12):2579-87. PubMed ID: 15928049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Rac switch regulates random versus directionally persistent cell migration.
    Pankov R; Endo Y; Even-Ram S; Araki M; Clark K; Cukierman E; Matsumoto K; Yamada KM
    J Cell Biol; 2005 Aug; 170(5):793-802. PubMed ID: 16129786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity.
    Zhang S; Schafer-Hales K; Khuri FR; Zhou W; Vertino PM; Marcus AI
    Cancer Res; 2008 Feb; 68(3):740-8. PubMed ID: 18245474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity.
    Pegtel DM; Ellenbroek SI; Mertens AE; van der Kammen RA; de Rooij J; Collard JG
    Curr Biol; 2007 Oct; 17(19):1623-34. PubMed ID: 17825562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of IQGAP1 in cell polarization and migration.
    Watanabe T; Noritake J; Kaibuchi K
    Novartis Found Symp; 2005; 269():92-101; discussion 101-5, 223-30. PubMed ID: 16355537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling.
    Koh W; Mahan RD; Davis GE
    J Cell Sci; 2008 Apr; 121(Pt 7):989-1001. PubMed ID: 18319301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nocodazole-induced changes in microtubule dynamics impair the morphology and directionality of migrating medial ganglionic eminence cells.
    Baudoin JP; Alvarez C; Gaspar P; Métin C
    Dev Neurosci; 2008; 30(1-3):132-43. PubMed ID: 18075261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of extracellular matrix-digesting invadopodia by primary aortic smooth muscle cells.
    Furmaniak-Kazmierczak E; Crawley SW; Carter RL; Maurice DH; Côté GP
    Circ Res; 2007 May; 100(9):1328-36. PubMed ID: 17446433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells.
    Gomes ER; Jani S; Gundersen GG
    Cell; 2005 May; 121(3):451-63. PubMed ID: 15882626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical signals polarize neuronal organelles, direct neuron migration, and orient cell division.
    Yao L; McCaig CD; Zhao M
    Hippocampus; 2009 Sep; 19(9):855-68. PubMed ID: 19280605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry.
    Rajnicek AM; Foubister LE; McCaig CD
    J Cell Sci; 2006 May; 119(Pt 9):1736-45. PubMed ID: 16595545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G-protein-activated phospholipase C-beta, new partners for cell polarity proteins Par3 and Par6.
    Cai Y; Stafford LJ; Bryan BA; Mitchell D; Liu M
    Oncogene; 2005 Jun; 24(26):4293-300. PubMed ID: 15782111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ezrin/moesin in motile Walker 256 carcinosarcoma cells: signal-dependent relocalization and role in migration.
    Rossy J; Gutjahr MC; Blaser N; Schlicht D; Niggli V
    Exp Cell Res; 2007 Apr; 313(6):1106-20. PubMed ID: 17292355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prioritising guidance cues: directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch.
    Rajnicek AM; Foubister LE; McCaig CD
    Dev Biol; 2007 Dec; 312(1):448-60. PubMed ID: 17976566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetics of Pak.
    Hofmann C; Shepelev M; Chernoff J
    J Cell Sci; 2004 Sep; 117(Pt 19):4343-54. PubMed ID: 15331659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal dynamics of RhoA activity in migrating cells.
    Pertz O; Hodgson L; Klemke RL; Hahn KM
    Nature; 2006 Apr; 440(7087):1069-72. PubMed ID: 16547516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actin-rich protrusions and nonlocalized GTPase activation in Merlin-deficient schwannomas.
    Flaiz C; Kaempchen K; Matthies C; Hanemann CO
    J Neuropathol Exp Neurol; 2007 Jul; 66(7):608-16. PubMed ID: 17620986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc42 localization and cell polarity depend on membrane traffic.
    Osmani N; Peglion F; Chavrier P; Etienne-Manneville S
    J Cell Biol; 2010 Dec; 191(7):1261-9. PubMed ID: 21173111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.