BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16912405)

  • 1. Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis.
    Yao H; Gu WY
    Biorheology; 2006; 43(3,4):323-35. PubMed ID: 16912405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional inhomogeneous triphasic finite-element analysis of physical signals and solute transport in human intervertebral disc under axial compression.
    Yao H; Gu WY
    J Biomech; 2007; 40(9):2071-7. PubMed ID: 17125776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical signals and solute transport in cartilage under dynamic unconfined compression: finite element analysis.
    Yao H; Gu WY
    Ann Biomed Eng; 2004 Mar; 32(3):380-90. PubMed ID: 15095812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of tension-compression nonlinearity on solute transport in charged hydrated fibrous tissues under dynamic unconfined compression.
    Huang CY; Gu WY
    J Biomech Eng; 2007 Jun; 129(3):423-9. PubMed ID: 17536910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid flow and convective transport of solutes within the intervertebral disc.
    Ferguson SJ; Ito K; Nolte LP
    J Biomech; 2004 Feb; 37(2):213-21. PubMed ID: 14706324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D finite element analysis of nutrient distributions and cell viability in the intervertebral disc: effects of deformation and degeneration.
    Jackson AR; Huang CY; Brown MD; Gu WY
    J Biomech Eng; 2011 Sep; 133(9):091006. PubMed ID: 22010741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hydration and fixed charge density on fluid transport in charged hydrated soft tissues.
    Gu WY; Yao H
    Ann Biomed Eng; 2003 Nov; 31(10):1162-70. PubMed ID: 14649490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.
    Hsieh AH; Wagner DR; Cheng LY; Lotz JC
    J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc.
    Malandrino A; Noailly J; Lacroix D
    J Biomech; 2014 Apr; 47(6):1520-5. PubMed ID: 24612720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes.
    Malandrino A; Noailly J; Lacroix D
    PLoS Comput Biol; 2011 Aug; 7(8):e1002112. PubMed ID: 21829341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of intervertebral disc degeneration-related properties using finite element models based on [Formula: see text]-weighted MRI data.
    Chetoui MA; Boiron O; Ghiss M; Dogui A; Deplano V
    Biomech Model Mechanobiol; 2019 Feb; 18(1):17-28. PubMed ID: 30074099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal changes of mechanical signals and extracellular composition in human intervertebral disc during degenerative progression.
    Zhu Q; Gao X; Gu W
    J Biomech; 2014 Nov; 47(15):3734-43. PubMed ID: 25305690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative contributions of strain-dependent permeability and fixed charged density of proteoglycans in predicting cervical disc biomechanics: a poroelastic C5-C6 finite element model study.
    Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB
    Med Eng Phys; 2011 May; 33(4):438-45. PubMed ID: 21167763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleus pulposus cell response to confined and unconfined compression implicates mechanoregulation by fluid shear stress.
    Wang P; Yang L; Hsieh AH
    Ann Biomed Eng; 2011 Mar; 39(3):1101-11. PubMed ID: 21132369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc.
    Castro APG; Alves JL
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):538-550. PubMed ID: 33111576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model.
    Iatridis JC; Laible JP; Krag MH
    J Biomech Eng; 2003 Feb; 125(1):12-24. PubMed ID: 12661193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc.
    Huang CY; Gu WY
    J Biomech; 2008; 41(6):1184-96. PubMed ID: 18374341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.