BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16912405)

  • 21. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades?
    Schmidt H; Galbusera F; Rohlmann A; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2342-55. PubMed ID: 23962527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.
    Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL
    Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of axial traction stress on solute transport and proteoglycan synthesis in the porcine intervertebral disc in vitro.
    Terahata N; Ishihara H; Ohshima H; Hirano N; Tsuji H
    Eur Spine J; 1994; 3(6):325-30. PubMed ID: 7866861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the nutrientsbehavior in intervertebral discs: a boundary integral simulation.
    González Y; Nieto F; Cerrolaza M
    Mol Cell Biomech; 2013 Mar; 10(1):67-84. PubMed ID: 24010246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering.
    Mauck RL; Hung CT; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):602-14. PubMed ID: 14618919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression.
    Silva P; Crozier S; Veidt M; Pearcy MJ
    J Mater Sci Mater Med; 2005 Jul; 16(7):663-9. PubMed ID: 15965599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of cartilage endplate on cell based disc regeneration: a finite element analysis.
    Wu Y; Cisewski S; Sachs BL; Yao H
    Mol Cell Biomech; 2013 Jun; 10(2):159-82. PubMed ID: 24015481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery.
    Johannessen W; Vresilovic EJ; Wright AC; Elliott DM
    Ann Biomed Eng; 2004 Jan; 32(1):70-6. PubMed ID: 14964723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression.
    Recuerda M; Coté SP; Villemure I; Périé D
    J Biomech Eng; 2011 Jul; 133(7):071006. PubMed ID: 21823745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An ionised/non-ionised dual porosity model of intervertebral disc tissue.
    Huyghe JM; Houben GB; Drost MR; van Donkelaar CC
    Biomech Model Mechanobiol; 2003 Aug; 2(1):3-19. PubMed ID: 14586814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage.
    Gu WY; Lai WM; Mow VC
    J Biomech; 1993 Jun; 26(6):709-23. PubMed ID: 8514815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direction-dependent constriction flow in a poroelastic solid: the intervertebral disc valve.
    Ayotte DC; Ito K; Perren SM; Tepic S
    J Biomech Eng; 2000 Dec; 122(6):587-93. PubMed ID: 11192378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading - Ex-vivo and In-Silico investigation.
    Nikkhoo M; Wang JL; Parnianpour M; El-Rich M; Khalaf K
    J Biomech; 2018 Mar; 70():26-32. PubMed ID: 29397111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanics of load-bearing of the intervertebral disc: an experimental and finite element model.
    Martinez JB; Oloyede VO; Broom ND
    Med Eng Phys; 1997 Mar; 19(2):145-56. PubMed ID: 9203149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osmoviscoelastic finite element model of the intervertebral disc.
    Schroeder Y; Wilson W; Huyghe JM; Baaijens FP
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of diurnal loading on the transport of charged antibiotics into intervertebral discs.
    Zhu Q; Gao X; Brown MD; Eismont F; Gu W
    J Biomech; 2019 Apr; 87():177-182. PubMed ID: 30905406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A one-dimensional theoretical prediction of the effect of reduced end-plate permeability on the mechanics of the intervertebral disc.
    Riches PE; McNally DS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):329-35. PubMed ID: 16225149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Material property discontinuities in intervertebral disc porohyperelastic finite element models generate numerical instabilities due to volumetric strain variations.
    Ruiz C; Noailly J; Lacroix D
    J Mech Behav Biomed Mater; 2013 Oct; 26():1-10. PubMed ID: 23796430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model.
    Xie F; Zhou H; Zhao W; Huang L
    Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of charged antibiotic penetration into human intervertebral discs: A numerical study.
    Zhu Q; Gao X; Li N; Gu W; Eismont F; Brown MD
    J Biomech; 2016 Sep; 49(13):3079-3084. PubMed ID: 27477326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.