These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 16912777)

  • 1. Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers.
    Li Y; Hoskins A; Schlottau F; Wagner KH; Embry C; Babbitt WR
    Appl Opt; 2006 Sep; 45(25):6409-20. PubMed ID: 16912777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Massively parallel coherent laser ranging using a soliton microcomb.
    Riemensberger J; Lukashchuk A; Karpov M; Weng W; Lucas E; Liu J; Kippenberg TJ
    Nature; 2020 May; 581(7807):164-170. PubMed ID: 32405018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building blocks for a two-frequency laser lidar-radar: a preliminary study.
    Morvan L; Lai ND; Dolfi D; Huignard JP; Brunel M; Bretenaker F; Le Floch A
    Appl Opt; 2002 Sep; 41(27):5702-12. PubMed ID: 12269571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent Doppler lidar signal spectrum with wind turbulence.
    Frehlich R; Cornman L
    Appl Opt; 1999 Dec; 38(36):7456-66. PubMed ID: 18324299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hardware Implemented Autocorrelation Technique for Estimating Power Spectral Density for Processing Signals from a Doppler Wind Lidar System.
    Abdelazim S; Santoro D; Arend M; Moshary F; Ahmed S
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of phase noise and Doppler-induced frequency offsets in coherent random amplitude modulated continuous-wave LiDAR.
    Spollard JT; Roberts LE; Sambridge CS; McKenzie K; Shaddock DA
    Opt Express; 2021 Mar; 29(6):9060-9083. PubMed ID: 33820343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution Doppler-velocity estimation techniques for processing of coherent heterodyne pulsed lidar data.
    Gurdev LL; Dreischuh TN; Stoyanov DV
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jan; 18(1):134-42. PubMed ID: 11151990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-resolved coherent lidar using a femtosecond fiber laser.
    Swann WC; Newbury NR
    Opt Lett; 2006 Mar; 31(6):826-8. PubMed ID: 16544637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial resolution enhancement of coherent Doppler wind lidar using differential correlation pair technique.
    Zhang Y; Wu Y; Xia H
    Opt Lett; 2021 Nov; 46(22):5550-5553. PubMed ID: 34780401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity analysis and correction algorithms for atmospheric CO
    Zhu Y; Liu J; Chen X; Zhu X; Bi D; Chen W
    Opt Express; 2019 Oct; 27(22):32679-32699. PubMed ID: 31684476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control.
    Rodrigo PJ; Pedersen C
    Opt Express; 2010 Mar; 18(5):5320-7. PubMed ID: 20389545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear Kalman filtering techniques for incoherent backscatter lidar: return power and log power estimation.
    Rye BJ; Hardesty RM
    Appl Opt; 1989 Sep; 28(18):3908-17. PubMed ID: 20555799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction algorithm of the frequency-modulated continuous-wave LIDAR ranging system.
    Cao X; Song P; Pan Z; Liu B
    Opt Express; 2021 Oct; 29(21):34150-34165. PubMed ID: 34809212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation.
    Sun X; Abshire JB
    Opt Express; 2012 Sep; 20(19):21291-304. PubMed ID: 23037252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent Doppler wind lidar with real-time wind processing and low signal-to-noise ratio reconstruction based on a convolutional neural network.
    Kliebisch O; Uittenbosch H; Thurn J; Mahnke P
    Opt Express; 2022 Feb; 30(4):5540-5552. PubMed ID: 35209514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CW coherent detection lidar for micro-Doppler sensing and raster-scan imaging of drones.
    Rodrigo PJ; Larsen HE; Pedersen C
    Opt Express; 2023 Feb; 31(5):7398-7412. PubMed ID: 36859871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directly modulated optical negative feedback lasers for long-range FMCW LiDAR.
    Yokota N; Kiuchi H; Yasaka H
    Opt Express; 2022 Mar; 30(7):11693-11703. PubMed ID: 35473108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small All-Range Lidar for Asteroid and Comet Core Missions.
    Sun X; Cremons DR; Mazarico E; Yang G; Abshire JB; Smith DE; Zuber MT; Storm M; Martin N; Hwang J; Beck JD; Huntoon NR; Rawlings DM
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An all-fiber image-reject homodyne coherent Doppler wind lidar.
    Abari CF; Pedersen AT; Mann J
    Opt Express; 2014 Oct; 22(21):25880-94. PubMed ID: 25401620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the spectral asymmetry of TEA CO2 laser pulses to determine the Doppler-shift sign in coherent lidars with low frequency stability.
    Marinov VS; Stoyanov DV
    Appl Opt; 1999 Apr; 38(12):2579-85. PubMed ID: 18319830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.