These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16912791)

  • 1. Comparison of subtractive Kramers-Kronig analysis and maximum entropy model in resolving phase from finite spectral range reflectance data.
    Gornov E; Vartiainen EM; Peiponen KE
    Appl Opt; 2006 Sep; 45(25):6519-24. PubMed ID: 16912791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kramers-Kronig analysis on the real refractive index of porous media in the terahertz spectral range.
    Silfsten P; Kontturi V; Ervasti T; Ketolainen J; Peiponen KE
    Opt Lett; 2011 Mar; 36(5):778-80. PubMed ID: 21368980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unified framework for the numerical evaluation of the Q-subtractive Kramers-Kronig relations and application to the reconstruction of optical constants of quartz.
    Nakov S; Sobakinskaya E; Müh F
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122157. PubMed ID: 36473297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite frequency f-sum rule for assessment of number density of gold nanoparticles (AuNPs) and Kramers-Kronig relation for refractive index of colloidal gold.
    Kontturi V; Silfsten P; Peiponen KE
    Appl Spectrosc; 2011 Jul; 65(7):746-9. PubMed ID: 21740635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kramers-Kronig relations applied to finite bandwidth data from suspensions of encapsulated microbubbles.
    Mobley J; Waters KR; Hughes MS; Hall CS; Marsh JN; Brandenburger GH; Miller JG
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2091-106. PubMed ID: 11108346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrieval of linear optical functions from finite range spectra.
    De Sousa Meneses D; Rousseau B; Echegut P; Simon P
    Appl Spectrosc; 2007 Dec; 61(12):1390-7. PubMed ID: 18198033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiply subtractive kramers-kronig analysis of optical data.
    Palmer KF; Williams MZ; Budde BA
    Appl Opt; 1998 May; 37(13):2660-73. PubMed ID: 18273208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kramers-Kronig analysis of infrared reflection spectra with perpendicular polarization.
    Yamamoto K; Masui A; Ishida H
    Appl Opt; 1994 Sep; 33(27):6285-93. PubMed ID: 20941159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kramers-kronig analysis of ratio reflectance spectra measured at an oblique angle.
    Querry MR; Holland WE
    Appl Opt; 1974 Mar; 13(3):595-8. PubMed ID: 20126029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kramers-Kronig relations and sum rules in nonlinear optical spectroscopy.
    Peiponen KE; Lucarini V; Saarinen JJ; Vartiainen E
    Appl Spectrosc; 2004 May; 58(5):499-509. PubMed ID: 15165324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using the Kramers-Kronig method to determine optical constants and evaluating its suitability as a linear transform for near-normal front-surface reflectance spectra.
    Kocak A; Berets SL; Milosevic V; Milosevic M
    Appl Spectrosc; 2006 Sep; 60(9):1004-7. PubMed ID: 17002825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared refraction spectroscopy - Kramers-Kronig analysis revisited.
    Mayerhöfer TG; Ivanovski V; Popp J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120799. PubMed ID: 34974295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved thickness estimation of liquid water using Kramers-Kronig relations for determination of precise optical parameters in terahertz transmission spectroscopy.
    Son H; Choi DH; Park GS
    Opt Express; 2017 Feb; 25(4):4509-4518. PubMed ID: 28241653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared Optical Constants from Pressed Pellets of Powders: I. Improved
    Johnson TJ; Diaz E; Hughey KD; Myers TL; Blake TA; Dohnalkova AC; Burton SD
    Appl Spectrosc; 2020 Aug; 74(8):851-867. PubMed ID: 32383392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive Reflectance Spectroscopy for Normal and Cancerous Skin Cells Refractive Index Determination: An In Vitro Study.
    Shirkavand A; Farivar S; Mohajerani E; Ataie-Fashtami L; Ghazimoradi MH
    Lasers Surg Med; 2019 Oct; 51(8):742-750. PubMed ID: 31094015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation on wavelength-dependent complex refractive index of liquids obtained by phase retrieval from reflectance dip due to surface plasmon resonance.
    Saarinen JJ; Peiponen KE; Vartiainen EM
    Appl Spectrosc; 2003 Mar; 57(3):288-92. PubMed ID: 14658620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning as phase retrieval tool for CARS spectra.
    Houhou R; Barman P; Schmitt M; Meyer T; Popp J; Bocklitz T
    Opt Express; 2020 Jul; 28(14):21002-21024. PubMed ID: 32680149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex refractive index of limestone in the visible and infrared.
    Querry MR; Osborne G; Lies K; Jordon R; Coveney RM
    Appl Opt; 1978 Feb; 17(3):353-6. PubMed ID: 20174414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kramers-kronig analysis of relative reflectance spectra measured at an oblique angle.
    Hale GM; Holland WE; Querry MR
    Appl Opt; 1973 Jan; 12(1):48-51. PubMed ID: 20125227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Verification of the Kramers-Kronig relations between ultrasonic attenuation and phase velocity in a finite spectral range for CFRP composites.
    Sokolovskaya YG; Podymova NB; Karabutov AA
    Ultrasonics; 2019 May; 95():37-44. PubMed ID: 30878705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.