BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16912868)

  • 1. Interaction of poly(L-lysines) with negatively charged membranes: an FT-IR and DSC study.
    Schwieger C; Blume A
    Eur Biophys J; 2007 Apr; 36(4-5):437-50. PubMed ID: 16912868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes.
    Takechi Y; Tanaka H; Kitayama H; Yoshii H; Tanaka M; Saito H
    Chem Phys Lipids; 2012 Jan; 165(1):51-8. PubMed ID: 22108318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M; Schwieger C; Meister A; Karlsson G; Blume A
    Biophys Chem; 2009 Sep; 144(1-2):27-37. PubMed ID: 19560854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of resveratrol on interactions between negatively charged DPPC/DPPG membranes and positively charged poly-l-lysine.
    Cieślik-Boczula K
    Chem Phys Lipids; 2018 Aug; 214():24-34. PubMed ID: 29842874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of poly(L-lysine) on the structure of dipalmitoylphosphatidylglycerol/water dispersions studied by X-ray scattering.
    Förster G; Schwieger C; Faber F; Weber T; Blume A
    Eur Biophys J; 2007 Apr; 36(4-5):425-35. PubMed ID: 16909276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of cationic peptides (KX)4K to DPPG bilayers. Increasing the hydrophobicity of the uncharged amino acid X drives formation of membrane bound β-sheets: A DSC and FT-IR study.
    Hädicke A; Blume A
    Biochim Biophys Acta; 2016 Jun; 1858(6):1196-206. PubMed ID: 26903220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of phenothiazine molecules on the interactions between positively charged poly-l-lysine and negatively charged DPPC/DPPG membranes.
    Trombik P; Cieślik-Boczula K
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117563. PubMed ID: 31689607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions.
    Hoernke M; Schwieger C; Kerth A; Blume A
    Biochim Biophys Acta; 2012 Jul; 1818(7):1663-72. PubMed ID: 22433675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide induced demixing in PG/PE lipid mixtures: a mechanism for the specificity of antimicrobial peptides towards bacterial membranes?
    Arouri A; Dathe M; Blume A
    Biochim Biophys Acta; 2009 Mar; 1788(3):650-9. PubMed ID: 19118516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between superoxide dismutase and dipalmitoylphosphotidylglycerol bilayers: a fourier transform infrared (FT-IR) spectroscopic study.
    Lo YL; Rahman YE
    Pharm Res; 1996 Feb; 13(2):265-71. PubMed ID: 8932447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruscogenin interacts with DPPC and DPPG model membranes and increases the membrane fluidity: FTIR and DSC studies.
    Sahin I; Ceylan Ç; Bayraktar O
    Arch Biochem Biophys; 2023 Jan; 733():109481. PubMed ID: 36522815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of poly-(L-lysine) and porin on the domain structure of mixed vesicles composed of lipopolysaccharide and phospholipid: an infrared spectroscopic study.
    Lasch P; Schultz CP; Naumann D
    Biophys J; 1998 Aug; 75(2):840-52. PubMed ID: 9675185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of poly(L-lysine) on the structural and thermotropic properties of dipalmitoylphosphatidylglycerol bilayers.
    Takahashi H; Matuoka S; Kato S; Ohki K; Hatta I
    Biochim Biophys Acta; 1992 Sep; 1110(1):29-36. PubMed ID: 1390833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of cationic model peptides (KX)
    Hädicke A; Blume A
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):415-424. PubMed ID: 28034634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of poly(L-arginine) with negatively charged DPPG membranes: calorimetric and monolayer studies.
    Schwieger C; Blume A
    Biomacromolecules; 2009 Aug; 10(8):2152-61. PubMed ID: 19603784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of Short Pentavalent Cationic Peptides with Negatively Charged DPPG Monolayers and Bilayers: Influence of Peptide Modifications on Binding.
    Hädicke A; Blume A
    J Phys Chem B; 2018 Nov; 122(46):10522-10534. PubMed ID: 30371093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of radioprotectant and potential antioxidant agent amifostine on the structure and dynamics of DPPC and DPPG liposomes.
    Cakmak Arslan G; Severcan F
    Biochim Biophys Acta Biomembr; 2019 Jun; 1861(6):1240-1251. PubMed ID: 31028720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the cholesterol reducing agent simvastatin with zwitterionic DPPC and charged DPPG phospholipid membranes.
    Sariisik E; Koçak M; Kucuk Baloglu F; Severcan F
    Biochim Biophys Acta Biomembr; 2019 Apr; 1861(4):810-818. PubMed ID: 30707888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.