These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 16913135)

  • 1. Extraction of nanosize copper pollutants with an ionic liquid.
    Huang HL; Wang HP; Wei GT; Sun IW; Huang JF; Yang YW
    Environ Sci Technol; 2006 Aug; 40(15):4761-4. PubMed ID: 16913135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic liquid-based single drop microextraction of ultra-trace copper in food and water samples before spectrophotometric determination.
    Wen X; Deng Q; Guo J
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1941-5. PubMed ID: 21697004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ XANES Studies on Extracted Copper from Scrap Cu/ITO Thin Film in an Ionic Liquid Containing Iodine/Iodide.
    Huang HL; Wei YJ
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New sample preparation method based on task-specific ionic liquids for extraction and determination of copper in urine and wastewater.
    Trtić-Petrović T; Dimitrijević A; Zdolšek N; Đorđević J; Tot A; Vraneš M; Gadžurić S
    Anal Bioanal Chem; 2018 Jan; 410(1):155-166. PubMed ID: 29098337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EXAFS and XANES studies of retention of copper and lead by a lignocellulosic biomaterial.
    Dupont L; Guillon E; Bouanda J; Dumonceau J; Aplincourt M
    Environ Sci Technol; 2002 Dec; 36(23):5062-6. PubMed ID: 12523421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speciation of chromium compounds from humic acid-zeolite Y to an ionic liquid during extraction.
    Huang HL; Wei YJ
    Chemosphere; 2018 Mar; 194():390-395. PubMed ID: 29223118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new dispersive liquid-liquid microextraction using ionic liquid based microemulsion coupled with cloud point extraction for determination of copper in serum and water samples.
    Arain SA; Kazi TG; Afridi HI; Arain MS; Panhwar AH; Khan N; Baig JA; Shah F
    Ecotoxicol Environ Saf; 2016 Apr; 126():186-192. PubMed ID: 26761783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic reduction of NO on copper/MCM-41 studied by in situ EXAFS and XANES.
    Huang YJ; Wang HP; Lee JF
    Chemosphere; 2003 Mar; 50(8):1035-41. PubMed ID: 12531709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ X-ray absorption spectroscopic studies of copper in a copper-rich sludge during electrokinetic treatments.
    Liu SH; Wang HP; Huang CH; Hsiung TL
    J Synchrotron Radiat; 2010 Mar; 17(2):202-6. PubMed ID: 20157272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of titania supported copper oxide catalysts for wet air oxidation of phenol.
    Kim KH; Ihm SK
    J Hazard Mater; 2007 Jul; 146(3):610-6. PubMed ID: 17513049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvation of Zn
    Busato M; D'Angelo P; Melchior A
    Phys Chem Chem Phys; 2019 Mar; 21(13):6958-6969. PubMed ID: 30869085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of metallic nanoparticle-biochars with ionic liquids for thermal transfer fluids.
    Huang HL; Huang ZH; Chu YC; Lin HP; Chang YJ
    Chemosphere; 2020 Jul; 250():126219. PubMed ID: 32105856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineralization of CCl4 with copper oxide.
    Chien YC; Wang HP; Yang YW
    Environ Sci Technol; 2001 Aug; 35(15):3259-62. PubMed ID: 11506017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EXAFS and XANES studies of copper in a solidified fly ash.
    Hsiao MC; Wang HP; Yang YW
    Environ Sci Technol; 2001 Jun; 35(12):2532-5. PubMed ID: 11432559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Influence of Ionic and Nonionic Surfactants on the Colloidal Stability and Removal of CuO Nanoparticles from Water by Chemical Coagulation.
    Khan R; Inam MA; Khan S; Jiménez AN; Park DR; Yeom IT
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30970550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41.
    Algarra M; Jiménez MV; Rodríguez-Castellón E; Jiménez-López A; Jiménez-Jiménez J
    Chemosphere; 2005 May; 59(6):779-86. PubMed ID: 15811406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ speciation studies of copper-humic substances in a contaminated soil during electrokinetic remediation.
    Liu SH; Wang HP
    J Environ Qual; 2004; 33(4):1280-7. PubMed ID: 15254109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct growth of nano-worm-like Cu
    Jiang XY; Kwon E; Wen JC; Bedia J; Thanh BX; Ghotekar S; Lee J; Tsai YC; Ebrahimi A; Lin KA
    J Colloid Interface Sci; 2023 May; 638():39-53. PubMed ID: 36731217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry.
    Stanisz E; Zgoła-Grześkowiak A
    Talanta; 2013 Oct; 115():178-83. PubMed ID: 24054576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.