These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 16913427)
1. Sulfonium and ammonium ligands of the active site of cholinesterases. Rozengart EV; Basova NE Dokl Biochem Biophys; 2006; 408():192-5. PubMed ID: 16913427 [No Abstract] [Full Text] [Related]
2. [Acyl pocket of the active center in cholinesterases and dialkyl phosphates: a study of their interaction by statistical methods]. Moralev SN Zh Evol Biokhim Fiziol; 2001; 37(2):92-100. PubMed ID: 11452790 [No Abstract] [Full Text] [Related]
3. [Conformation-functional relations in oligomethylenesulfone organophosphorus inhibitors of cholinesterases of various origin]. Rozengart EV; Shestakova NN; Prokator SO; Basova NE Zh Evol Biokhim Fiziol; 1998; 34(5):563-9. PubMed ID: 10198993 [No Abstract] [Full Text] [Related]
4. Preparation, in vitro screening and molecular modelling of monoquaternary compounds related to the selective acetylcholinesterase inhibitor BW284c51. Benek O; Musilek K; Horova A; Dohnal V; Dolezal R; Kuca K Med Chem; 2014; 11(1):21-9. PubMed ID: 24773345 [TBL] [Abstract][Full Text] [Related]
5. Thioacylates of cyclic ammonium derivatives of acetylcholine as cholinesterase substrates and inhibitors. Rozengart EV; Basova NE Dokl Biochem Biophys; 2007; 415():186-90. PubMed ID: 17933331 [No Abstract] [Full Text] [Related]
6. Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors. Savini L; Gaeta A; Fattorusso C; Catalanotti B; Campiani G; Chiasserini L; Pellerano C; Novellino E; McKissic D; Saxena A J Med Chem; 2003 Jan; 46(1):1-4. PubMed ID: 12502352 [TBL] [Abstract][Full Text] [Related]
7. [The role of electrostatic interactions in the absorption of ligands to the active sites of cholinesterases, as indicated by molecular modeling data]. Belinskaia DA; Juffer AH; Shestakova NN Bioorg Khim; 2010; 36(2):200-5. PubMed ID: 20531478 [TBL] [Abstract][Full Text] [Related]
8. [Effect of the substrate structure on the backward inhibition of cholinesterases of various origin]. Rozengart EV; Basova NE; Moralev SN; Khovanskikh AE Zh Evol Biokhim Fiziol; 2000; 36(4):298-303. PubMed ID: 11075456 [No Abstract] [Full Text] [Related]
9. Cholinesterase inhibitory activity of chlorophenoxy derivatives-Histamine H3 receptor ligands. Łażewska D; Jończyk J; Bajda M; Szałaj N; Więckowska A; Panek D; Moore C; Kuder K; Malawska B; Kieć-Kononowicz K Bioorg Med Chem Lett; 2016 Aug; 26(16):4140-5. PubMed ID: 27445168 [TBL] [Abstract][Full Text] [Related]
10. Bivalent 5,8,9,13b-tetrahydro-6H-isoquino[1,2-a]isoquinolines and -isoquinolinium salts: novel heterocyclic templates for butyrylcholinesterase inhibitors. Schulze M; Siol O; Decker M; Lehmann J Bioorg Med Chem Lett; 2010 May; 20(9):2946-9. PubMed ID: 20350808 [TBL] [Abstract][Full Text] [Related]
11. Docking and quantum mechanic studies on cholinesterases and their inhibitors. Correa-Basurto J; Flores-Sandoval C; Marín-Cruz J; Rojo-Domínguez A; Espinoza-Fonseca LM; Trujillo-Ferrara JG Eur J Med Chem; 2007 Jan; 42(1):10-9. PubMed ID: 17055616 [TBL] [Abstract][Full Text] [Related]
12. Discovery of butyrylcholinesterase inhibitors among derivatives of azaphenothiazines. Lodarski K; Jończyk J; Guzior N; Bajda M; Gładysz J; Walczyk J; Jeleń M; Morak-Młodawska B; Pluta K; Malawska B J Enzyme Inhib Med Chem; 2015 Feb; 30(1):98-106. PubMed ID: 24666296 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of sulfonium reversible inhibitors of cholinesterases of various animals. Rozengart EV; Basova NE Dokl Biochem Biophys; 2004; 395():61-4. PubMed ID: 15253553 [No Abstract] [Full Text] [Related]
14. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Radić Z; Pickering NA; Vellom DC; Camp S; Taylor P Biochemistry; 1993 Nov; 32(45):12074-84. PubMed ID: 8218285 [TBL] [Abstract][Full Text] [Related]
15. [Comparative analysis of sensitivity of cholinesterase inhibitors by multidimensional statistical methods]. Moralev SN; Perchenok AIu Zh Evol Biokhim Fiziol; 2008; 44(5):488-91. PubMed ID: 18959211 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Rosenberry TL; Brazzolotto X; Macdonald IR; Wandhammer M; Trovaslet-Leroy M; Darvesh S; Nachon F Molecules; 2017 Nov; 22(12):. PubMed ID: 29186056 [TBL] [Abstract][Full Text] [Related]
17. Design, synthesis and evaluation of isaindigotone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Pan L; Tan JH; Hou JQ; Huang SL; Gu LQ; Huang ZS Bioorg Med Chem Lett; 2008 Jul; 18(13):3790-3. PubMed ID: 18524585 [TBL] [Abstract][Full Text] [Related]
18. [Sensitivity of cholinesterases from various sources to organophosphate inhibitors with S-alkyl radicals of various lengths]. Kormilitsyn BN; Moralev SN; Khovanskikh AE; Dalimov DN Zh Evol Biokhim Fiziol; 2003; 39(5):405-9. PubMed ID: 14689726 [No Abstract] [Full Text] [Related]
19. Organofluoride ammonium compounds: a new group of reversible inhibitors of cholinesterases of various animals. Rozengart EV; Bassova NE Dokl Biochem Biophys; 2003; 389():71-4. PubMed ID: 12856408 [No Abstract] [Full Text] [Related]
20. The mechanism and benefit of human butyrylcholinesterase activation by what would otherwise be inhibitors. Stojan J Chem Biol Interact; 2019 Aug; 308():350-356. PubMed ID: 31173753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]