These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 16913790)
1. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. Samjeské G; Miki A; Ye S; Osawa M J Phys Chem B; 2006 Aug; 110(33):16559-66. PubMed ID: 16913790 [TBL] [Abstract][Full Text] [Related]
2. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: a time-resolved surface-enhanced infrared study. Samjeské G; Miki A; Ye S; Yamakata A; Mukouyama Y; Okamoto H; Osawa M J Phys Chem B; 2005 Dec; 109(49):23509-16. PubMed ID: 16375325 [TBL] [Abstract][Full Text] [Related]
3. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy. Miyake H; Okada T; Samjeské G; Osawa M Phys Chem Chem Phys; 2008 Jul; 10(25):3662-9. PubMed ID: 18563227 [TBL] [Abstract][Full Text] [Related]
4. Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures. Chen YX; Ye S; Heinen M; Jusys Z; Osawa M; Behm RJ J Phys Chem B; 2006 May; 110(19):9534-44. PubMed ID: 16686500 [TBL] [Abstract][Full Text] [Related]
5. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: a mathematical modeling and simulation. Mukouyama Y; Kikuchi M; Samjeské G; Osawa M; Okamoto H J Phys Chem B; 2006 Jun; 110(24):11912-7. PubMed ID: 16800494 [TBL] [Abstract][Full Text] [Related]
6. On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode. Xu J; Yuan D; Yang F; Mei D; Zhang Z; Chen YX Phys Chem Chem Phys; 2013 Mar; 15(12):4367-76. PubMed ID: 23416880 [TBL] [Abstract][Full Text] [Related]
7. Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface. Casado-Rivera E; Gál Z; Angelo AC; Lind C; DiSalvo FJ; Abruña HD Chemphyschem; 2003 Feb; 4(2):193-9. PubMed ID: 12619419 [TBL] [Abstract][Full Text] [Related]
8. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode? Chen YX; Heinen M; Jusys Z; Behm RJ Langmuir; 2006 Dec; 22(25):10399-408. PubMed ID: 17129008 [TBL] [Abstract][Full Text] [Related]
9. Formate, an active intermediate for direct oxidation of methanol on pt electrode. Chen YX; Miki A; Ye S; Sakai H; Osawa M J Am Chem Soc; 2003 Apr; 125(13):3680-1. PubMed ID: 12656581 [TBL] [Abstract][Full Text] [Related]
10. Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods: oxidation of CO adsorbed on carbon-supported Pt catalyst and unsupported Pt black. Kunimatsu K; Sato T; Uchida H; Watanabe M Langmuir; 2008 Apr; 24(7):3590-601. PubMed ID: 18288871 [TBL] [Abstract][Full Text] [Related]
11. Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT. Beltramo GL; Shubina TE; Koper MT Chemphyschem; 2005 Dec; 6(12):2597-606. PubMed ID: 16331729 [TBL] [Abstract][Full Text] [Related]
12. In-situ flow-cell IRAS observation of intermediates during methanol oxidation on low-index platinum surfaces. Nakamura M; Shibutani K; Hoshi N Chemphyschem; 2007 Aug; 8(12):1846-9. PubMed ID: 17639527 [TBL] [Abstract][Full Text] [Related]
13. Importance of acid-base equilibrium in electrocatalytic oxidation of formic acid on platinum. Joo J; Uchida T; Cuesta A; Koper MT; Osawa M J Am Chem Soc; 2013 Jul; 135(27):9991-4. PubMed ID: 23808962 [TBL] [Abstract][Full Text] [Related]
14. Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy. Jung C; Sánchez-Sánchez CM; Lin CL; Rodríguez-López J; Bard AJ Anal Chem; 2009 Aug; 81(16):7003-8. PubMed ID: 19627121 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical and FTIRS characterisation of NO adlayers on cyanide-modified Pt(111) electrodes: the mechanism of nitric oxide electroreduction on Pt. Cuesta A; Escudero M Phys Chem Chem Phys; 2008 Jul; 10(25):3628-34. PubMed ID: 18563223 [TBL] [Abstract][Full Text] [Related]
17. Surface-enhanced infrared absorption spectroscopic studies of adsorbed nitrate, nitric oxide, and related compounds 1: Reduction of adsorbed NO on a platinum electrode. Nakata K; Okubo A; Shimazu K; Yamakata A; Ye S; Osawa M Langmuir; 2008 Apr; 24(8):4352-7. PubMed ID: 18324854 [TBL] [Abstract][Full Text] [Related]
18. Surface-enhanced infrared absorption spectroscopic studies of adsorbed nitrate, nitric oxide, and related compounds 2: Nitrate ion adsorption at a platinum electrode. Nakata K; Kayama Y; Shimazu K; Yamakata A; Ye S; Osawa M Langmuir; 2008 Apr; 24(8):4358-63. PubMed ID: 18324856 [TBL] [Abstract][Full Text] [Related]
19. The effects of the specific adsorption of anion on the reactivity of the Ru(0001) surface towards CO adsorption and oxidation: in situ FTIRS studies. Jin JM; Lin WF; Christensen PA Phys Chem Chem Phys; 2008 Jul; 10(25):3774-83. PubMed ID: 18563238 [TBL] [Abstract][Full Text] [Related]
20. Temperature evolution of structure and bonding of formic acid and formate on fully oxidized and highly reduced CeO2(111). Gordon WO; Xu Y; Mullins DR; Overbury SH Phys Chem Chem Phys; 2009 Dec; 11(47):11171-83. PubMed ID: 20024386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]