These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16913870)

  • 1. Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2.
    Collins S; Sültemeyer D; Bell G
    Plant Cell Environ; 2006 Sep; 29(9):1812-9. PubMed ID: 16913870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga.
    Collins S; Bell G
    Nature; 2004 Sep; 431(7008):566-9. PubMed ID: 15457260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses.
    Yamano T; Fukuzawa H
    J Basic Microbiol; 2009 Feb; 49(1):42-51. PubMed ID: 19253331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of CO(2) and bicarbonate by intact cells and chloroplasts of Tetraedron minimum and Chlamydomonas noctigama.
    van Hunnik E; Amoroso G; Sültemeyer D
    Planta; 2002 Sep; 215(5):763-9. PubMed ID: 12244441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What physiological acclimation supports increased growth at high CO2 conditions?
    Spijkerman E
    Physiol Plant; 2008 May; 133(1):41-8. PubMed ID: 18298410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii.
    Yamano T; Tsujikawa T; Hatano K; Ozawa S; Takahashi Y; Fukuzawa H
    Plant Cell Physiol; 2010 Sep; 51(9):1453-68. PubMed ID: 20660228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of a high-CO2-inducible, periplasmic protein, H43, and its application as a high-CO2-responsive marker for study of the high-CO2-sensing mechanism in Chlamydomonas reinhardtii.
    Hanawa Y; Watanabe M; Karatsu Y; Fukuzawa H; Shiraiwa Y
    Plant Cell Physiol; 2007 Feb; 48(2):299-309. PubMed ID: 17202179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters.
    Spalding MH
    J Exp Bot; 2008; 59(7):1463-73. PubMed ID: 17597098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth condition-dependent sensitivity, photodamage and stress response of Chlamydomonas reinhardtii exposed to high light conditions.
    Fischer BB; Wiesendanger M; Eggen RI
    Plant Cell Physiol; 2006 Aug; 47(8):1135-45. PubMed ID: 16857695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability.
    Fukuzawa H; Miura K; Ishizaki K; Kucho KI; Saito T; Kohinata T; Ohyama K
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5347-52. PubMed ID: 11287669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii.
    Gao H; Wang Y; Fei X; Wright DA; Spalding MH
    Plant J; 2015 Apr; 82(1):1-11. PubMed ID: 25660294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rewinding the tape: selection of algae adapted to high CO2 at current and pleistocene levels of CO2.
    Collins S; Sültemeyer D; Bell G
    Evolution; 2006 Jul; 60(7):1392-401. PubMed ID: 16929656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of high-CO(2)-inducible extracellular proteins in the unicellular green alga, Chlamydomonas reinhardtii.
    Baba M; Suzuki I; Shiraiwa Y
    Plant Cell Physiol; 2011 Aug; 52(8):1302-14. PubMed ID: 21680606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales.
    Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O
    Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism of CO2-responsive transcriptional regulation in photosynthetic organisms: carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii].
    Fukuzawa H; Yamano T
    Tanpakushitsu Kakusan Koso; 2005 Jul; 50(8):958-65. PubMed ID: 16001801
    [No Abstract]   [Full Text] [Related]  

  • 16. Evolution of natural algal populations at elevated CO2.
    Collins S; Bell G
    Ecol Lett; 2006 Feb; 9(2):129-35. PubMed ID: 16958877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of zinc in a regulatory protein, CCM1, which regulates the carbon-concentrating mechanism in Chlamydomonas reinhardtii.
    Kohinata T; Nishino H; Fukuzawa H
    Plant Cell Physiol; 2008 Feb; 49(2):273-83. PubMed ID: 18202004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic carbon acquisition in some synurophyte algae.
    Bhatti S; Colman B
    Physiol Plant; 2008 May; 133(1):33-40. PubMed ID: 18298411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of CO2 acquisition in an acid-tolerant Chlamydomonas.
    Balkos KD; Colman B
    Plant Cell Environ; 2007 Jun; 30(6):745-52. PubMed ID: 17470150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acclimation to low [CO(2)] by an inorganic carbon-concentrating mechanism in Cyanophora paradoxa.
    Burey SC; Poroyko V; Ergen ZN; Fathi-Nejad S; Schüller C; Ohnishi N; Fukuzawa H; Bohnert HJ; Löffelhardt W
    Plant Cell Environ; 2007 Nov; 30(11):1422-35. PubMed ID: 17897412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.