These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 16913872)
1. Are ABA, ethylene or their interaction involved in the response of leaf growth to soil water deficit? An analysis using naturally occurring variation or genetic transformation of ABA production in maize. Voisin AS; Reidy B; Parent B; Rolland G; Redondo E; Gerentes D; Tardieu F; Muller B Plant Cell Environ; 2006 Sep; 29(9):1829-40. PubMed ID: 16913872 [TBL] [Abstract][Full Text] [Related]
2. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of Anthesis-Silking Interval to water deficit. Welcker C; Boussuge B; Bencivenni C; Ribaut JM; Tardieu F J Exp Bot; 2007; 58(2):339-49. PubMed ID: 17130185 [TBL] [Abstract][Full Text] [Related]
3. Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots. Ernst L; Goodger JQ; Alvarez S; Marsh EL; Berla B; Lockhart E; Jung J; Li P; Bohnert HJ; Schachtman DP J Exp Bot; 2010 Jul; 61(12):3395-405. PubMed ID: 20566566 [TBL] [Abstract][Full Text] [Related]
4. Initiation and regulation of water deficit-induced abscisic acid accumulation in maize leaves and roots: cellular volume and water relations. Jia W; Zhang J; Liang J J Exp Bot; 2001 Feb; 52(355):295-300. PubMed ID: 11283174 [TBL] [Abstract][Full Text] [Related]
5. Nitrate signalling to stomata and growing leaves: interactions with soil drying, ABA, and xylem sap pH in maize. Wilkinson S; Bacon MA; Davies WJ J Exp Bot; 2007; 58(7):1705-16. PubMed ID: 17374875 [TBL] [Abstract][Full Text] [Related]
6. Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress. De Costa W; Zörb C; Hartung W; Schubert S Physiol Plant; 2007 Oct; 131(2):311-21. PubMed ID: 18251902 [TBL] [Abstract][Full Text] [Related]
7. ABA, ethylene and the control of shoot and root growth under water stress. Sharp RE; LeNoble ME J Exp Bot; 2002 Jan; 53(366):33-7. PubMed ID: 11741038 [TBL] [Abstract][Full Text] [Related]
8. Genetic variability for leaf growth rate and duration under water deficit in sunflower: analysis of responses at cell, organ, and plant level. Pereyra-Irujo GA; Velázquez L; Lechner L; Aguirrezábal LA J Exp Bot; 2008; 59(8):2221-32. PubMed ID: 18448477 [TBL] [Abstract][Full Text] [Related]
9. Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. Ren H; Gao Z; Chen L; Wei K; Liu J; Fan Y; Davies WJ; Jia W; Zhang J J Exp Bot; 2007; 58(2):211-9. PubMed ID: 16982652 [TBL] [Abstract][Full Text] [Related]
10. Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Benschop JJ; Jackson MB; Gühl K; Vreeburg RA; Croker SJ; Peeters AJ; Voesenek LA Plant J; 2005 Dec; 44(5):756-68. PubMed ID: 16297068 [TBL] [Abstract][Full Text] [Related]
11. Dealing with the genotype x environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. Reymond M; Muller B; Tardieu F J Exp Bot; 2004 Nov; 55(407):2461-72. PubMed ID: 15286140 [TBL] [Abstract][Full Text] [Related]
12. Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. Giuliani S; Sanguineti MC; Tuberosa R; Bellotti M; Salvi S; Landi P J Exp Bot; 2005 Dec; 56(422):3061-70. PubMed ID: 16246858 [TBL] [Abstract][Full Text] [Related]
13. The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf. Trouverie J; Thevenot C; Rocher JP; Sotta B; Prioul JL J Exp Bot; 2003 Sep; 54(390):2177-86. PubMed ID: 12925669 [TBL] [Abstract][Full Text] [Related]
14. Abscisic acid signalling when soil moisture is heterogeneous: decreased photoperiod sap flow from drying roots limits abscisic acid export to the shoots. Dodd IC; Egea G; Davies WJ Plant Cell Environ; 2008 Sep; 31(9):1263-74. PubMed ID: 18507805 [TBL] [Abstract][Full Text] [Related]
15. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration. Martin-Vertedor AI; Dodd IC Plant Cell Environ; 2011 Jul; 34(7):1164-75. PubMed ID: 21410712 [TBL] [Abstract][Full Text] [Related]
16. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Chenu K; Chapman SC; Hammer GL; McLean G; Salah HB; Tardieu F Plant Cell Environ; 2008 Mar; 31(3):378-91. PubMed ID: 18088328 [TBL] [Abstract][Full Text] [Related]
17. Xylem tension affects growth-induced water potential and daily elongation of maize leaves. Tang AC; Boyer JS J Exp Bot; 2008; 59(4):753-64. PubMed ID: 18349050 [TBL] [Abstract][Full Text] [Related]
18. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. Fricke W; Akhiyarova G; Veselov D; Kudoyarova G J Exp Bot; 2004 May; 55(399):1115-23. PubMed ID: 15047763 [TBL] [Abstract][Full Text] [Related]
19. Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Tardieu F; Parent B; Simonneau T Plant Cell Environ; 2010 Apr; 33(4):636-47. PubMed ID: 20002334 [TBL] [Abstract][Full Text] [Related]
20. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Parent B; Hachez C; Redondo E; Simonneau T; Chaumont F; Tardieu F Plant Physiol; 2009 Apr; 149(4):2000-12. PubMed ID: 19211703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]