These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 169139)
41. New substituted triaza-benzo[cd]azulen-9-ones as promising phosphodiesterase-4 inhibitors. Devillers I; Pevet I; Jacobelli H; Durand C; Fasquelle V; Puaud J; Gaudillière B; Idrissi M; Moreau F; Wrigglesworth R Bioorg Med Chem Lett; 2004 Jun; 14(12):3303-6. PubMed ID: 15149695 [No Abstract] [Full Text] [Related]
42. Increased building block access through collaboration. Helal CJ; Bartolozzi A; Goble SD; Mani NS; Guzman-Perez A; Ohri AK; Shi ZC; Subramanyam C Drug Discov Today; 2018 Aug; 23(8):1458-1462. PubMed ID: 29571837 [No Abstract] [Full Text] [Related]
43. Cyclic AMP phosphodiesterase inhibitors depress production of plasminogen activator by Chinese hamster ovary cells. Mott DM; Fabisch PH; Sorof S Biochem Biophys Res Commun; 1976 Jun; 70(4):1150-6. PubMed ID: 182161 [No Abstract] [Full Text] [Related]
44. In vitro and in vivo inhibitory effects of propentofylline on cyclic AMP phosphodiesterase activity. Nagata K; Ogawa T; Omosu M; Fujimoto K; Hayashi S Arzneimittelforschung; 1985; 35(7):1034-6. PubMed ID: 2996562 [TBL] [Abstract][Full Text] [Related]
46. Inhibition of calmodulin dependent c-AMP-phosphodiesterase by moxaverine and papaverine. Mannhold R Arzneimittelforschung; 1988 Dec; 38(12):1806-8. PubMed ID: 2854468 [TBL] [Abstract][Full Text] [Related]
47. CGH2466, a combined adenosine receptor antagonist, p38 mitogen-activated protein kinase and phosphodiesterase type 4 inhibitor with potent in vitro and in vivo anti-inflammatory activities. Trifilieff A; Keller TH; Press NJ; Howe T; Gedeck P; Beer D; Walker C Br J Pharmacol; 2005 Apr; 144(7):1002-10. PubMed ID: 15685201 [TBL] [Abstract][Full Text] [Related]
48. Acylpeptides, the inhibitors of cyclic adenosine 3',5'-monophosphate phosphodiesterase. III. Inhibition of cyclic AMP phosphodiesterase. Hosono K; Suzuki H J Antibiot (Tokyo); 1983 Jun; 36(6):679-83. PubMed ID: 6307959 [TBL] [Abstract][Full Text] [Related]
49. Relaxant effects of various xanthine derivatives. Relationship to cyclic nucleotide phosphodiesterase inhibition. Takagi K; Ogawa K; Tanaka H; Satake T; Watanabe Y; Chijiwa T; Hidaka H Adv Second Messenger Phosphoprotein Res; 1992; 25():353-62. PubMed ID: 1313267 [No Abstract] [Full Text] [Related]
50. Direct evidence for extracellular adenosine 3':5'-monophosphate phosphodiesterase induction and phosphodiesterase inhibitor repression by exogenous adenosine 3':5'-monophosphate in Dictyostelium purpureum. Tsang AS; Coukell MB Eur J Biochem; 1979 Apr; 95(2):419-25. PubMed ID: 222584 [No Abstract] [Full Text] [Related]
51. Phosphodiesterase 4 regulation of cyclic AMP in pulmonary remodelling: potential roles for isoform selective inhibitors. Shepherd MC Pulm Pharmacol Ther; 2006; 19(1):24-31. PubMed ID: 16046159 [No Abstract] [Full Text] [Related]
52. Inhibition by purine compounds of cyclic GMP-stimulated cyclic AMP phosphodiesterase activity from a particulate fraction of rat striatum. Oleshansky MA Life Sci; 1980 Sep; 27(12):1089-95. PubMed ID: 6158640 [No Abstract] [Full Text] [Related]
53. Demonstration of functional compartments of cyclic AMP in rat platelets by the use of phosphodiesterase inhibitors. Ashida S; Sakuma K Adv Second Messenger Phosphoprotein Res; 1992; 25():229-39. PubMed ID: 1313259 [No Abstract] [Full Text] [Related]
54. Discovery of thiadiazoles as a novel structural class of potent and selective PDE7 inhibitors. Part 2: metabolism-directed optimization studies towards orally bioavailable derivatives. Vergne F; Bernardelli P; Lorthiois E; Pham N; Proust E; Oliveira C; Mafroud AK; Ducrot P; Wrigglesworth R; Berlioz-Seux F; Coleon F; Chevalier E; Moreau F; Idrissi M; Tertre A; Descours A; Berna P; Li M Bioorg Med Chem Lett; 2004 Sep; 14(18):4615-21. PubMed ID: 15324875 [TBL] [Abstract][Full Text] [Related]
55. Induction of motility in immature bovine spermatozoa by cyclic AMP phosphodiesterase inhibitors and seminal plasma. Hoskins DD; Hall ML; Munsterman D Biol Reprod; 1975 Sep; 13(2):168-76. PubMed ID: 177102 [No Abstract] [Full Text] [Related]
56. Cyclic AMP phosphodiesterase activity in fetal and adult muscle of the rhesus monkey. Bocek RM; Beatty CH Dev Biol; 1976 Feb; 48(2):382-91. PubMed ID: 176071 [No Abstract] [Full Text] [Related]
57. Effect of papaverine analogues on 3', 5'-adenosine monophosphate phosphodiesterase activity in rat brain. Stancheva S; Uzunov P; Stoytchev T Acta Physiol Pharmacol Bulg; 1980; 6(1):41-7. PubMed ID: 6250318 [TBL] [Abstract][Full Text] [Related]
58. Renal cell proliferation and the two faces of cyclic adenosine monophosphate. Grantham JJ J Lab Clin Med; 1997 Nov; 130(5):459-60. PubMed ID: 9390632 [No Abstract] [Full Text] [Related]
59. A structure-activity relationship study on papaverine analogs. Gupta SP; Garg C; Gupta JK Res Commun Chem Pathol Pharmacol; 1988 Aug; 61(2):265-8. PubMed ID: 2847262 [TBL] [Abstract][Full Text] [Related]
60. Inhibition of G2 phase in unsynchronized HELA cells: synergism between adenosine 3':5'-monophosphate analogues and phosphodiesterase inhibitors. Kurz JB; Friedman DL J Cyclic Nucleotide Res; 1976; 2(6):405-15. PubMed ID: 190276 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]