BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

814 related articles for article (PubMed ID: 16914031)

  • 1. Retrotranspositions in orthologous regions of closely related grass species.
    Du C; Swigonová Z; Messing J
    BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long terminal repeat retrotransposons of Oryza sativa.
    McCarthy EM; Liu J; Lizhi G; McDonald JF
    Genome Biol; 2002 Sep; 3(10):RESEARCH0053. PubMed ID: 12372141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum.
    Jiang SY; Ramachandran S
    PLoS One; 2013; 8(7):e71118. PubMed ID: 23923055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.
    Baucom RS; Estill JC; Chaparro C; Upshaw N; Jogi A; Deragon JM; Westerman RP; Sanmiguel PJ; Bennetzen JL
    PLoS Genet; 2009 Nov; 5(11):e1000732. PubMed ID: 19936065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses.
    Wang Q; Dooner HK
    Plant J; 2012 Oct; 72(2):212-21. PubMed ID: 22621343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison.
    Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J
    Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The paleontology of intergene retrotransposons of maize.
    SanMiguel P; Gaut BS; Tikhonov A; Nakajima Y; Bennetzen JL
    Nat Genet; 1998 Sep; 20(1):43-5. PubMed ID: 9731528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome
    Zhang QJ; Gao LZ
    G3 (Bethesda); 2017 Jun; 7(6):1875-1885. PubMed ID: 28413161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.
    Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL
    Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication of nonautonomous retroelements in soybean appears to be both recent and common.
    Wawrzynski A; Ashfield T; Chen NW; Mammadov J; Nguyen A; Podicheti R; Cannon SB; Thareau V; Ameline-Torregrosa C; Cannon E; Chacko B; Couloux A; Dalwani A; Denny R; Deshpande S; Egan AN; Glover N; Howell S; Ilut D; Lai H; Del Campo SM; Metcalf M; O'Bleness M; Pfeil BE; Ratnaparkhe MB; Samain S; Sanders I; Ségurens B; Sévignac M; Sherman-Broyles S; Tucker DM; Yi J; Doyle JJ; Geffroy V; Roe BA; Maroof MA; Young ND; Innes RW
    Plant Physiol; 2008 Dec; 148(4):1760-71. PubMed ID: 18952860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrotransposon insertions in rice gene pairs associated with reduced conservation of gene pairs in grass genomes.
    Krom N; Ramakrishna W
    Genomics; 2012 May; 99(5):308-14. PubMed ID: 22414560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice.
    Ma J; Devos KM; Bennetzen JL
    Genome Res; 2004 May; 14(5):860-9. PubMed ID: 15078861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae.
    Roulin A; Piegu B; Fortune PM; Sabot F; D'Hont A; Manicacci D; Panaud O
    BMC Evol Biol; 2009 Mar; 9():58. PubMed ID: 19291296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into nested long terminal repeat retrotransposons in Brassica species.
    Wei L; Xiao M; An Z; Ma B; Mason AS; Qian W; Li J; Fu D
    Mol Plant; 2013 Mar; 6(2):470-82. PubMed ID: 22930733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis.
    Zedek F; Smerda J; Smarda P; Bureš P
    BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice.
    Wang H; Liu JS
    BMC Genomics; 2008 Aug; 9():382. PubMed ID: 18691433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics.
    Thomas-Bulle C; Piednoël M; Donnart T; Filée J; Jollivet D; Bonnivard É
    BMC Genomics; 2018 Nov; 19(1):821. PubMed ID: 30442098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insights into Long Terminal Repeat Retrotransposons in Mulberry Species.
    Ma B; Kuang L; Xin Y; He N
    Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30970574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TEnest: automated chronological annotation and visualization of nested plant transposable elements.
    Kronmiller BA; Wise RP
    Plant Physiol; 2008 Jan; 146(1):45-59. PubMed ID: 18032588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.