BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 16914159)

  • 1. Crystal structure and mechanism of tripeptidyl activity of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis.
    Ito K; Nakajima Y; Xu Y; Yamada N; Onohara Y; Ito T; Matsubara F; Kabashima T; Nakayama K; Yoshimoto T
    J Mol Biol; 2006 Sep; 362(2):228-40. PubMed ID: 16914159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel inhibitor for prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis and details of substrate-recognition mechanism.
    Xu Y; Nakajima Y; Ito K; Zheng H; Oyama H; Heiser U; Hoffmann T; Gärtner UT; Demuth HU; Yoshimoto T
    J Mol Biol; 2008 Jan; 375(3):708-19. PubMed ID: 18042490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel prolyl tri/tetra-peptidyl aminopeptidase from Streptomyces mobaraensis: substrate specificity and enzyme gene cloning.
    Umezawa Y; Yokoyama K; Kikuchi Y; Date M; Ito K; Yoshimoto T; Matsui H
    J Biochem; 2004 Sep; 136(3):293-300. PubMed ID: 15598885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolyl tripeptidyl peptidase from Porphyromonas gingivalis. A novel enzyme with possible pathological implications for the development of periodontitis.
    Banbula A; Mak P; Bugno M; Silberring J; Dubin A; Nelson D; Travis J; Potempa J
    J Biol Chem; 1999 Apr; 274(14):9246-52. PubMed ID: 10092598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function properties of prolyl oligopeptidase family enzymes.
    Rea D; Fülöp V
    Cell Biochem Biophys; 2006; 44(3):349-65. PubMed ID: 16679522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ala657 and conserved active site residues promote fibroblast activation protein endopeptidase activity via distinct mechanisms of transition state stabilization.
    Meadows SA; Edosada CY; Mayeda M; Tran T; Quan C; Raab H; Wiesmann C; Wolf BB
    Biochemistry; 2007 Apr; 46(15):4598-605. PubMed ID: 17381073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibility of prolyl oligopeptidase: molecular dynamics and molecular framework analysis of the potential substrate pathways.
    Fuxreiter M; Magyar C; Juhász T; Szeltner Z; Polgár L; Simon I
    Proteins; 2005 Aug; 60(3):504-12. PubMed ID: 15971204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concerted structural changes in the peptidase and the propeller domains of prolyl oligopeptidase are required for substrate binding.
    Szeltner Z; Rea D; Juhász T; Renner V; Fülöp V; Polgár L
    J Mol Biol; 2004 Jul; 340(3):627-37. PubMed ID: 15210359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization and preliminary X-ray characterization of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis.
    Nakajima Y; Ito K; Xu Y; Yamada N; Onohara Y; Ito T; Yoshimoto T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Dec; 61(Pt 12):1046-8. PubMed ID: 16511231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligopeptidase B: a processing peptidase involved in pathogenesis.
    Coetzer TH; Goldring JP; Huson LE
    Biochimie; 2008 Feb; 90(2):336-44. PubMed ID: 18029266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolyl aminopeptidase gene from Flavobacterium meningosepticum: cloning, purification of the expressed enzyme, and analysis of its sequence.
    Kitazono A; Kabashima T; Huang HS; Ito K; Yoshimoto T
    Arch Biochem Biophys; 1996 Dec; 336(1):35-41. PubMed ID: 8951032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of a propeller loop in the quaternary structure and enzymatic activity of prolyl dipeptidases DPP-IV and DPP9.
    Tang HK; Chen KC; Liou GG; Cheng SC; Chien CH; Tang HY; Huang LH; Chang HP; Chou CY; Chen X
    FEBS Lett; 2011 Nov; 585(21):3409-14. PubMed ID: 22001206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous assays for meprin alpha and beta using prolyl tripeptidyl aminopeptidase (PtP) from Porphyromonas gingivalis.
    Schulze A; Wermann M; Demuth HU; Yoshimoto T; Ramsbeck D; Schlenzig D; Schilling S
    Anal Biochem; 2018 Oct; 559():11-16. PubMed ID: 30098994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophilic residues surrounding the S1 and S2 pockets contribute to dimerisation and catalysis in human dipeptidyl peptidase 8 (DP8).
    Pitman MR; Menz RI; Abbott CA
    Biol Chem; 2010 Aug; 391(8):959-72. PubMed ID: 20536396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the polyketide cyclase AknH with bound substrate and product analogue: implications for catalytic mechanism and product stereoselectivity.
    Kallio P; Sultana A; Niemi J; Mäntsälä P; Schneider G
    J Mol Biol; 2006 Mar; 357(1):210-20. PubMed ID: 16414075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues.
    Brüx C; Ben-David A; Shallom-Shezifi D; Leon M; Niefind K; Shoham G; Shoham Y; Schomburg D
    J Mol Biol; 2006 May; 359(1):97-109. PubMed ID: 16631196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding.
    Chen CK; Lee GC; Ko TP; Guo RT; Huang LM; Liu HJ; Ho YF; Shaw JF; Wang AH
    J Mol Biol; 2009 Jul; 390(4):672-85. PubMed ID: 19447113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the broad substrate specificity of fiddler crab collagenolytic serine protease 1.
    Tsu CA; Perona JJ; Fletterick RJ; Craik CS
    Biochemistry; 1997 May; 36(18):5393-401. PubMed ID: 9154921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model for substrate interactions in C5a peptidase from Streptococcus pyogenes: A 1.9 A crystal structure of the active form of ScpA.
    Kagawa TF; O'Connell MR; Mouat P; Paoli M; O'Toole PW; Cooney JC
    J Mol Biol; 2009 Feb; 386(3):754-72. PubMed ID: 19152799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of novel NADP-dependent 3-hydroxyisobutyrate dehydrogenase from Thermus thermophilus HB8.
    Lokanath NK; Ohshima N; Takio K; Shiromizu I; Kuroishi C; Okazaki N; Kuramitsu S; Yokoyama S; Miyano M; Kunishima N
    J Mol Biol; 2005 Sep; 352(4):905-17. PubMed ID: 16126223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.