These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 16914448)

  • 61. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions.
    Thanaraj TA; Clark F
    Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Splicing in Caenorhabditis elegans does not require an AG at the 3' splice acceptor site.
    Aroian RV; Levy AD; Koga M; Ohshima Y; Kramer JM; Sternberg PW
    Mol Cell Biol; 1993 Jan; 13(1):626-37. PubMed ID: 8417357
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pentamer vocabularies characterizing introns and intron-like intergenic tracts from Caenorhabditis elegans and Drosophila melanogaster.
    Bultrini E; Pizzi E; Del Giudice P; Frontali C
    Gene; 2003 Jan; 304():183-92. PubMed ID: 12568727
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Deep Splicer: A CNN Model for Splice Site Prediction in Genetic Sequences.
    Fernandez-Castillo E; Barbosa-Santillán LI; Falcon-Morales L; Sánchez-Escobar JJ
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627292
    [TBL] [Abstract][Full Text] [Related]  

  • 65. U12 intron positions are more strongly conserved between animals and plants than U2 intron positions.
    Basu MK; Makalowski W; Rogozin IB; Koonin EV
    Biol Direct; 2008 May; 3():19. PubMed ID: 18479526
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages.
    Hudson AJ; McWatters DC; Bowser BA; Moore AN; Larue GE; Roy SW; Russell AG
    BMC Evol Biol; 2019 Aug; 19(1):162. PubMed ID: 31375061
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Intronic alternative splicing regulators identified by comparative genomics in nematodes.
    Kabat JL; Barberan-Soler S; McKenna P; Clawson H; Farrer T; Zahler AM
    PLoS Comput Biol; 2006 Jul; 2(7):e86. PubMed ID: 16839192
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Alternative splicing of U12-dependent introns in vivo responds to purine-rich enhancers.
    Dietrich RC; Shukla GC; Fuller JD; Padgett RA
    RNA; 2001 Oct; 7(10):1378-88. PubMed ID: 11680842
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The U11-48K protein contacts the 5' splice site of U12-type introns and the U11-59K protein.
    Turunen JJ; Will CL; Grote M; Lührmann R; Frilander MJ
    Mol Cell Biol; 2008 May; 28(10):3548-60. PubMed ID: 18347052
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition.
    Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR
    Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mutations in the Caenorhabditis elegans U2AF large subunit UAF-1 alter the choice of a 3' splice site in vivo.
    Ma L; Horvitz HR
    PLoS Genet; 2009 Nov; 5(11):e1000708. PubMed ID: 19893607
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evolutionary conservation of minor U12-type spliceosome between plants and humans.
    Lorkovic ZJ; Lehner R; Forstner C; Barta A
    RNA; 2005 Jul; 11(7):1095-107. PubMed ID: 15987817
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evolution of the U2 Spliceosome for Processing Numerous and Highly Diverse Non-canonical Introns in the Chordate Fritillaria borealis.
    Henriet S; Colom Sanmartí B; Sumic S; Chourrout D
    Curr Biol; 2019 Oct; 29(19):3193-3199.e4. PubMed ID: 31543449
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Reconstruction of ancestral protosplice sites.
    Sverdlov AV; Rogozin IB; Babenko VN; Koonin EV
    Curr Biol; 2004 Aug; 14(16):1505-8. PubMed ID: 15324669
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assessing the fraction of short-distance tandem splice sites under purifying selection.
    Hiller M; Szafranski K; Sinha R; Huse K; Nikolajewa S; Rosenstiel P; Schreiber S; Backofen R; Platzer M
    RNA; 2008 Apr; 14(4):616-29. PubMed ID: 18268022
    [TBL] [Abstract][Full Text] [Related]  

  • 76. ERISdb: a database of plant splice sites and splicing signals.
    Szcześniak MW; Kabza M; Pokrzywa R; Gudyś A; Makałowska I
    Plant Cell Physiol; 2013 Feb; 54(2):e10. PubMed ID: 23299413
    [TBL] [Abstract][Full Text] [Related]  

  • 77. U11 snRNA interacts in vivo with the 5' splice site of U12-dependent (AU-AC) pre-mRNA introns.
    Kolossova I; Padgett RA
    RNA; 1997 Mar; 3(3):227-33. PubMed ID: 9056760
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A mutational analysis of U12-dependent splice site dinucleotides.
    Dietrich RC; Fuller JD; Padgett RA
    RNA; 2005 Sep; 11(9):1430-40. PubMed ID: 16043500
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Splice site requirements and switches in plants.
    Schuler MA
    Curr Top Microbiol Immunol; 2008; 326():39-59. PubMed ID: 18630746
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes.
    Schwartz SH; Silva J; Burstein D; Pupko T; Eyras E; Ast G
    Genome Res; 2008 Jan; 18(1):88-103. PubMed ID: 18032728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.