BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16914451)

  • 21. Biological activity of mammalian transcriptional repressors.
    Thiel G; Lietz M; Bach K; Guethlein L; Cibelli G
    Biol Chem; 2001 Jun; 382(6):891-902. PubMed ID: 11501753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters.
    Kadosh D; Struhl K
    Cell; 1997 May; 89(3):365-71. PubMed ID: 9150136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SIN3-dependent transcriptional repression by interaction with the Mad1 DNA-binding protein.
    Kasten MM; Ayer DE; Stillman DJ
    Mol Cell Biol; 1996 Aug; 16(8):4215-21. PubMed ID: 8754821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution structure of the interacting domains of the Mad-Sin3 complex: implications for recruitment of a chromatin-modifying complex.
    Brubaker K; Cowley SM; Huang K; Loo L; Yochum GS; Ayer DE; Eisenman RN; Radhakrishnan I
    Cell; 2000 Nov; 103(4):655-65. PubMed ID: 11106735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A.
    Zhang JS; Moncrieffe MC; Kaczynski J; Ellenrieder V; Prendergast FG; Urrutia R
    Mol Cell Biol; 2001 Aug; 21(15):5041-9. PubMed ID: 11438660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 13-amino acid amphipathic alpha-helix is required for the functional interaction between the transcriptional repressor Mad1 and mSin3A.
    Eilers AL; Billin AN; Liu J; Ayer DE
    J Biol Chem; 1999 Nov; 274(46):32750-6. PubMed ID: 10551834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The yeast SIN3 gene product negatively regulates the activity of the human progesterone receptor and positively regulates the activities of GAL4 and the HAP1 activator.
    Nawaz Z; Baniahmad C; Burris TP; Stillman DJ; O'Malley BW; Tsai MJ
    Mol Gen Genet; 1994 Dec; 245(6):724-33. PubMed ID: 7830720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mmip1: a novel leucine zipper protein that reverses the suppressive effects of Mad family members on c-myc.
    Gupta K; Anand G; Yin X; Grove L; Prochownik EV
    Oncogene; 1998 Mar; 16(9):1149-59. PubMed ID: 9528857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupled unfolding and dimerization by the PAH2 domain of the mammalian Sin3A corepressor.
    Zhang Y; Zhang Z; Demeler B; Radhakrishnan I
    J Mol Biol; 2006 Jun; 360(1):7-14. PubMed ID: 16813833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of retinal bZIP transcription factor NRL with Flt3-interacting zinc-finger protein Fiz1: possible role of Fiz1 as a transcriptional repressor.
    Mitton KP; Swain PK; Khanna H; Dowd M; Apel IJ; Swaroop A
    Hum Mol Genet; 2003 Feb; 12(4):365-73. PubMed ID: 12566383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sin3 interacts with Foxk1 and regulates myogenic progenitors.
    Shi X; Garry DJ
    Mol Cell Biochem; 2012 Jul; 366(1-2):251-8. PubMed ID: 22476904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1).
    Kuzmichev A; Zhang Y; Erdjument-Bromage H; Tempst P; Reinberg D
    Mol Cell Biol; 2002 Feb; 22(3):835-48. PubMed ID: 11784859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution structure of a novel zinc finger motif in the SAP30 polypeptide of the Sin3 corepressor complex and its potential role in nucleic acid recognition.
    He Y; Imhoff R; Sahu A; Radhakrishnan I
    Nucleic Acids Res; 2009 Apr; 37(7):2142-52. PubMed ID: 19223330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chick Hairy1 protein interacts with Sap18, a component of the Sin3/HDAC transcriptional repressor complex.
    Sheeba CJ; Palmeirim I; Andrade RP
    BMC Dev Biol; 2007 Jul; 7():83. PubMed ID: 17623094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a novel BRMS1-homologue protein p40 as a component of the mSin3A/p33(ING1b)/HDAC1 deacetylase complex.
    Nikolaev AY; Papanikolaou NA; Li M; Qin J; Gu W
    Biochem Biophys Res Commun; 2004 Oct; 323(4):1216-22. PubMed ID: 15451426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of SAP25, a novel component of the mSin3 corepressor complex.
    Shiio Y; Rose DW; Aur R; Donohoe S; Aebersold R; Eisenman RN
    Mol Cell Biol; 2006 Feb; 26(4):1386-97. PubMed ID: 16449650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The neuronal transcription factor Myt1L interacts via a conserved motif with the PAH1 domain of Sin3 to recruit the Sin3L/Rpd3L histone deacetylase complex.
    Marcum RD; Radhakrishnan I
    FEBS Lett; 2020 Jul; 594(14):2322-2330. PubMed ID: 32391601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The unfolded protein response represses differentiation through the RPD3-SIN3 histone deacetylase.
    Schröder M; Clark R; Liu CY; Kaufman RJ
    EMBO J; 2004 Jun; 23(11):2281-92. PubMed ID: 15141165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex.
    Rampalli S; Pavithra L; Bhatt A; Kundu TK; Chattopadhyay S
    Mol Cell Biol; 2005 Oct; 25(19):8415-29. PubMed ID: 16166625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mouse Sin3A interacts with and can functionally substitute for the amino-terminal repression of the Myc antagonist Mxi1.
    Rao G; Alland L; Guida P; Schreiber-Agus N; Chen K; Chin L; Rochelle JM; Seldin MF; Skoultchi AI; DePinho RA
    Oncogene; 1996 Mar; 12(5):1165-72. PubMed ID: 8649810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.