BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27 related articles for article (PubMed ID: 16914896)

  • 1. RBC deformability and amino acid concentrations after hypo-osmotic challenge may reflect chronic cell hydration status in healthy young men.
    Stookey JD; Klein A; Hamer J; Chi C; Higa A; Ng V; Arieff A; Kuypers FA; Larkin S; Perrier E; Lang F
    Physiol Rep; 2013 Oct; 1(5):e00117. PubMed ID: 24303184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estrogen regulation and ion dependence of taurine uptake by MCF-7 human breast cancer cells.
    Shennan DB; Thomson J
    Cell Mol Biol Lett; 2007 Sep; 12(3):396-406. PubMed ID: 17334682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of the volume-activated amino acid efflux pathway in cultured human breast cancer cells.
    Shennan DB; Thomson J
    Gen Physiol Biophys; 2011 Mar; 30(1):45-51. PubMed ID: 21460411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of a hyposmotic shock and purinergic agonists on K+(Rb+) efflux from cultured human breast cancer cells.
    Gow IF; Thomson J; Davidson J; Shennan DB
    Biochim Biophys Acta; 2005 Jun; 1712(1):52-61. PubMed ID: 15890311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular ATP increases [Ca(2+)](i) in distal tubule cells. II. Activation of a Ca(2+)-dependent Cl(-) conductance.
    Rubera I; Tauc M; Bidet M; Verheecke-Mauze C; De Renzis G; Poujeol C; Cuiller B; Poujeol P
    Am J Physiol Renal Physiol; 2000 Jul; 279(1):F102-11. PubMed ID: 10894792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation by extracellular Cl- of volume-activated organic osmolyte and halide permeabilities in HeLa cells.
    Stutzin A; Eguiguren AL; Cid LP; Sepúlveda FV
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C999-1007. PubMed ID: 9316421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells.
    Lambert IH; Hoffmann EK
    J Membr Biol; 1994 Dec; 142(3):289-98. PubMed ID: 7535853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmoregulation of taurine efflux from cultured human breast cancer cells: comparison with volume activated Cl- efflux and regulation by extracellular ATP.
    Shennan DB; Thomson J; Gow IF
    Cell Physiol Biochem; 2006; 18(1-3):113-22. PubMed ID: 16914896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swelling-induced taurine transport: relationship with chloride channels, anion-exchangers and other swelling-activated transport pathways.
    Shennan DB
    Cell Physiol Biochem; 2008; 21(1-3):15-28. PubMed ID: 18209468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the cellular content of the organic osmolyte taurine in mammalian cells.
    Lambert IH
    Neurochem Res; 2004 Jan; 29(1):27-63. PubMed ID: 14992263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swelling-induced taurine efflux from HeLa cells: cell volume regulation.
    Lambert IH; Sepúlveda FV
    Adv Exp Med Biol; 2000; 483():487-95. PubMed ID: 11787635
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of the volume-activated taurine pathway in cultured cerebellar granule neurons.
    Pasantes-Morales H; Peña Segura C; García O; Morales Mulia MM; Sánchez Olea R; Morán J
    Adv Exp Med Biol; 1996; 403():393-400. PubMed ID: 8915376
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.