These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16915523)

  • 41. Expression diversity and evolutionary dynamics of rice duplicate genes.
    Yim WC; Lee BM; Jang CS
    Mol Genet Genomics; 2009 May; 281(5):483-93. PubMed ID: 19184107
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic signature of rice domestication shown by a variety of genes.
    Zhang Y; Wang J; Zhang X; Chen JQ; Tian D; Yang S
    J Mol Evol; 2009 Apr; 68(4):393-402. PubMed ID: 19290563
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pedigree-based genome re-sequencing reveals genetic variation patterns of elite backbone varieties during modern rice improvement.
    Zheng X; Li L; Liang F; Tan C; Tang S; Yu S; Diao Y; Li S; Hu Z
    Sci Rep; 2017 Mar; 7(1):292. PubMed ID: 28331200
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strong positive selection drives rapid diversification of R-genes in Arabidopsis relatives.
    Chen Q; Han Z; Jiang H; Tian D; Yang S
    J Mol Evol; 2010 Feb; 70(2):137-48. PubMed ID: 20044783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process.
    Michelmore RW; Meyers BC
    Genome Res; 1998 Nov; 8(11):1113-30. PubMed ID: 9847076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Diversity in the Oryza genus.
    Vaughan DA; Morishima H; Kadowaki K
    Curr Opin Plant Biol; 2003 Apr; 6(2):139-46. PubMed ID: 12667870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of 142 genes resolves the rapid diversification of the rice genus.
    Zou XH; Zhang FM; Zhang JG; Zang LL; Tang L; Wang J; Sang T; Ge S
    Genome Biol; 2008; 9(3):R49. PubMed ID: 18315873
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid reorganization of resistance gene homologues in cereal genomes.
    Leister D; Kurth J; Laurie DA; Yano M; Sasaki T; Devos K; Graner A; Schulze-Lefert P
    Proc Natl Acad Sci U S A; 1998 Jan; 95(1):370-5. PubMed ID: 9419382
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unique pattern of R-gene variation within populations in Arabidopsis.
    Ding J; Zhang W; Jing Z; Chen JQ; Tian D
    Mol Genet Genomics; 2007 Jun; 277(6):619-29. PubMed ID: 17277944
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-Wide Analysis of Genetic Variations and the Detection of Rich Variants of NBS-LRR Encoding Genes in Common Wild Rice Lines.
    Yu H; Shahid MQ; Li R; Li W; Liu W; Ghouri F; Liu X
    Plant Mol Biol Report; 2018; 36(4):618-630. PubMed ID: 30363818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Advance on the cloning and functional analysis of disease resistance genes in rice].
    E ZG; Wang L
    Yi Chuan; 2009 Oct; 31(10):999-1005. PubMed ID: 19840921
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Numbers of genes in the NBS and RLK families vary by more than four-fold within a plant species and are regulated by multiple factors.
    Zhang M; Wu YH; Lee MK; Liu YH; Rong Y; Santos TS; Wu C; Xie F; Nelson RL; Zhang HB
    Nucleic Acids Res; 2010 Oct; 38(19):6513-25. PubMed ID: 20542917
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution and genetic population structure of prickly lettuce (Lactuca serriola) and its RGC2 resistance gene cluster.
    Kuang H; van Eck HJ; Sicard D; Michelmore R; Nevo E
    Genetics; 2008 Mar; 178(3):1547-58. PubMed ID: 18385115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pièce de Résistance: novel classes of plant disease resistance genes.
    Dangl JL
    Cell; 1995 Feb; 80(3):363-6. PubMed ID: 7859277
    [No Abstract]   [Full Text] [Related]  

  • 55. We need winners in the race to increase photosynthesis in rice, whether from conventional breeding, biotechnology or both.
    Long SP
    Plant Cell Environ; 2014 Jan; 37(1):19-21. PubMed ID: 24004407
    [No Abstract]   [Full Text] [Related]  

  • 56. An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes Pit1 localization and function.
    Li Y; Wang Q; Jia H; Ishikawa K; Kosami KI; Ueba T; Tsujimoto A; Yamanaka M; Yabumoto Y; Miki D; Sasaki E; Fukao Y; Fujiwara M; Kaneko-Kawano T; Tan L; Kojima C; Wing RA; Sebastian A; Nishimura H; Fukada F; Niu Q; Shimizu M; Yoshida K; Terauchi R; Shimamoto K; Kawano Y
    Nat Commun; 2024 May; 15(1):4610. PubMed ID: 38816417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combining Transcriptome and Whole Genome Re-Sequencing to Screen Disease Resistance Genes for Wheat Dwarf Bunt.
    Jia Y; Shen T; Wen Z; Chen J; Liu Q
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139183
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-wide identification, characterization, and evolutionary analysis of NBS genes and their association with disease resistance in Musa spp.
    Chelliah A; Arumugam C; Suthanthiram B; Raman T; Subbaraya U
    Funct Integr Genomics; 2022 Dec; 23(1):7. PubMed ID: 36538175
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Copy Number Variation among Resistance Genes Analogues in
    Dolatabadian A; Yuan Y; Bayer PE; Petereit J; Severn-Ellis A; Tirnaz S; Patel D; Edwards D; Batley J
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36360273
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular evolution of the
    Xie P; Liu J; Lu R; Zhang Y; Sun X
    Front Genet; 2022; 13():991900. PubMed ID: 36147495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.