These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16915630)

  • 1. Availability of crop residues as sustainable feedstock for bioethanol production in North Carolina.
    Shahbazi A; Li Y
    Appl Biochem Biotechnol; 2006; 129-132():41-54. PubMed ID: 16915630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canadian biomass reserves for biorefining.
    Mabee WE; Fraser ED; McFarlane PN; Saddler JN
    Appl Biochem Biotechnol; 2006; 129-132():22-40. PubMed ID: 16915629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agricultural residue availability in the United States.
    Haq Z; Easterly JL
    Appl Biochem Biotechnol; 2006; 129-132():3-21. PubMed ID: 16915628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems.
    Kumar A; Sokhansanj S; Flynn PC
    Appl Biochem Biotechnol; 2006; 129-132():71-87. PubMed ID: 16915632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rail vs truck transport of biomass.
    Mahmudi H; Flynn PC
    Appl Biochem Biotechnol; 2006; 129-132():88-103. PubMed ID: 16915633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Updates on softwood-to-ethanol process development.
    Mabee WE; Gregg DJ; Arato C; Berlin A; Bura R; Gilkes N; Mirochnik O; Pan X; Pye EK; Saddler JN
    Appl Biochem Biotechnol; 2006; 129-132():55-70. PubMed ID: 16915631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Availability of corn stover as a sustainable feedstock for bioethanol production.
    Kadam KL; McMillan JD
    Bioresour Technol; 2003 May; 88(1):17-25. PubMed ID: 12573559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China.
    Gnansounou E; Dauriat A; Wyman CE
    Bioresour Technol; 2005 Jun; 96(9):985-1002. PubMed ID: 15668196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crop residues as soil amendments and feedstock for bioethanol production.
    Lal R
    Waste Manag; 2008; 28(4):747-58. PubMed ID: 18053700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power.
    Wyman CE
    Biotechnol Prog; 2003; 19(2):254-62. PubMed ID: 12675557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of corn prices on water footprints of bioethanol.
    Suh K; Suh S; Smith T
    Bioresour Technol; 2011 Apr; 102(7):4747-54. PubMed ID: 21306890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels.
    Holder CT; Cleland JC; LeDuc SD; Andereck Z; Hogan C; Martin KM
    J Air Waste Manag Assoc; 2016 Apr; 66(4):356-65. PubMed ID: 26727486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Untapped renewable energy potential of crop residues in Pakistan: Challenges and future directions.
    Kashif M; Awan MB; Nawaz S; Amjad M; Talib B; Farooq M; Nizami AS; Rehan M
    J Environ Manage; 2020 Feb; 256():109924. PubMed ID: 31818740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of water requirement factors for biomass conversion pathway.
    Singh S; Kumar A
    Bioresour Technol; 2011 Jan; 102(2):1316-28. PubMed ID: 20888758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska.
    Sesmero JP
    J Environ Manage; 2014 Nov; 144():218-25. PubMed ID: 24956467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agriculture. Sustainable biofuels redux.
    Robertson GP; Dale VH; Doering OC; Hamburg SP; Melillo JM; Wander MM; Parton WJ; Adler PR; Barney JN; Cruse RM; Duke CS; Fearnside PM; Follett RF; Gibbs HK; Goldemberg J; Mladenoff DJ; Ojima D; Palmer MW; Sharpley A; Wallace L; Weathers KC; Wiens JA; Wilhelm WW
    Science; 2008 Oct; 322(5898):49-50. PubMed ID: 18832631
    [No Abstract]   [Full Text] [Related]  

  • 17. The relative cost of biomass energy transport.
    Searcy E; Flynn P; Ghafoori E; Kumar A
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):639-52. PubMed ID: 18478422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro and macroalgal biomass: a renewable source for bioethanol.
    John RP; Anisha GS; Nampoothiri KM; Pandey A
    Bioresour Technol; 2011 Jan; 102(1):186-93. PubMed ID: 20663661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algal biomass conversion to bioethanol - a step-by-step assessment.
    Harun R; Yip JW; Thiruvenkadam S; Ghani WA; Cherrington T; Danquah MK
    Biotechnol J; 2014 Jan; 9(1):73-86. PubMed ID: 24227697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What is (and is not) vital to advancing cellulosic ethanol.
    Wyman CE
    Trends Biotechnol; 2007 Apr; 25(4):153-7. PubMed ID: 17320227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.