BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16915695)

  • 1. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer.
    Yu JH; Lee DH; Oh YJ; Han KC; Ryu YW; Seo JH
    Appl Biochem Biotechnol; 2006; 129-132():870-9. PubMed ID: 16915695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer.
    Yu JH; Lee DH; Oh YJ; Han KC; Ryu YW; Seo JH
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):870-9. PubMed ID: 18563661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling substrate concentration in fed-batch candida magnoliae culture increases mannitol production.
    Lee JK; Song JY; Kim SY
    Biotechnol Prog; 2003; 19(3):768-75. PubMed ID: 12790637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae.
    Kohl ES; Leet TH; Lee DY; Kim HJ; Ryu YW; Seo JH
    Biotechnol Lett; 2003 Dec; 25(24):2103-5. PubMed ID: 14969417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of protein expression profiles of erythritol-producing Candida magnoliae in response to glucose perturbation.
    Kim HJ; Lee HR; Kim CS; Jin YS; Seo JH
    Enzyme Microb Technol; 2013 Aug; 53(3):174-80. PubMed ID: 23830459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of fructophilic properties of osmotolerant Candida magnoliae.
    Yu JH; Lee DH; Park YC; Lee MG; Kim DO; Ryu YW; Seo JH
    J Microbiol Biotechnol; 2008 Feb; 18(2):248-54. PubMed ID: 18309268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of oxygen transfer on glycerol biosynthesis by an osmophilic yeast Candida magnoliae I(2)B.
    Sahoo DK; Agarwal GP
    Biotechnol Bioeng; 2002 Jun; 78(5):545-55. PubMed ID: 12115124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of glucose in the bioconversion of fructose into mannitol by Candida magnoliae.
    Baek H; Song KH; Park SM; Kim SY; Hyun HH
    Biotechnol Lett; 2003 May; 25(10):761-5. PubMed ID: 12882004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mannitol production from glycerol by resting cells of Candida magnoliae.
    Khan A; Bhide A; Gadre R
    Bioresour Technol; 2009 Oct; 100(20):4911-3. PubMed ID: 19467862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics and physiology of erythritol-producing strains.
    Park YC; Lee DY; Lee DH; Kim HJ; Ryu YW; Seo JH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):251-60. PubMed ID: 15652814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation.
    Tronchoni J; Gamero A; Arroyo-López FN; Barrio E; Querol A
    Int J Food Microbiol; 2009 Sep; 134(3):237-43. PubMed ID: 19632733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A new osmotolerant and glycerol-highly-producing species--Candida glycerolgenesis Zhuge sp. nov].
    Wang Z; Zhuge J; Fang H
    Wei Sheng Wu Xue Bao; 1999 Feb; 39(1):68-74. PubMed ID: 12555405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythritol production with minimum by-product using Candida magnoliae mutant.
    Ghezelbash GR; Nahvi I; Malekpour A
    Prikl Biokhim Mikrobiol; 2014; 50(3):324-8. PubMed ID: 25757342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on growth and metabolism of Oenococcus oeni on sugars and sugar mixtures.
    Zhang DS; Lovitt RW
    J Appl Microbiol; 2005; 99(3):565-72. PubMed ID: 16108798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with Saccharomyces cerevisiae.
    Lebeau T; Jouenne T; Junter GA
    Microbiol Res; 2007; 162(3):211-8. PubMed ID: 16959480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110.
    Lee DH; Lee YJ; Ryu YW; Seo JH
    Microb Cell Fact; 2010 Jun; 9():43. PubMed ID: 20529366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level.
    Jeya M; Lee KM; Tiwari MK; Kim JS; Gunasekaran P; Kim SY; Kim IW; Lee JK
    Appl Microbiol Biotechnol; 2009 May; 83(2):225-31. PubMed ID: 19169680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of osmotic and salt stress in the expression of erythrose reductase in Candida magnoliae.
    Park EH; Lee HY; Ryu YW; Seo JH; Kim MD
    J Microbiol Biotechnol; 2011 Oct; 21(10):1064-8. PubMed ID: 22031032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42.
    Sawada K; Taki A; Yamakawa T; Seki M
    J Biosci Bioeng; 2009 Nov; 108(5):385-90. PubMed ID: 19804861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of the transketolase gene from erythritol-producing yeast Candida magnoliae.
    Yoo BH; Park EH; Seo JH; Kim MD
    J Microbiol Biotechnol; 2014 Oct; 24(10):1389-96. PubMed ID: 25394484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.