These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 16915708)
1. Construction of recombinant Bacillus subtilis for production of polyhydroxyalkanoates. Wang Y; Ruan L; Lo WH; Chua H; Yu HF Appl Biochem Biotechnol; 2006; 129-132():1015-22. PubMed ID: 16915708 [TBL] [Abstract][Full Text] [Related]
2. Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-ketoacyl-acyl-carrier-protein synthase III (fabH) and polyhydroxyalkanoate synthesis genes. Nomura CT; Tanaka T; Gan Z; Kuwabara K; Abe H; Takase K; Taguchi K; Doi Y Biomacromolecules; 2004; 5(4):1457-64. PubMed ID: 15244465 [TBL] [Abstract][Full Text] [Related]
3. A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates. Chen JY; Song G; Chen GQ Antonie Van Leeuwenhoek; 2006 Jan; 89(1):157-67. PubMed ID: 16496091 [TBL] [Abstract][Full Text] [Related]
4. Chimeric enzyme composed of polyhydroxyalkanoate (PHA) synthases from Ralstonia eutropha and Aeromonas caviae enhances production of PHAs in recombinant Escherichia coli. Matsumoto K; Takase K; Yamamoto Y; Doi Y; Taguchi S Biomacromolecules; 2009 Apr; 10(4):682-5. PubMed ID: 19226108 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering and characterization of phaC1 and phaC2 genes from Pseudomonas putida KCTC1639 for overproduction of medium-chain-length polyhydroxyalkanoate. Kim TK; Jung YM; Vo MT; Shioya S; Lee YH Biotechnol Prog; 2006; 22(6):1541-6. PubMed ID: 17137299 [TBL] [Abstract][Full Text] [Related]
6. Engineering of polyhydroxyalkanoate (PHA) synthase PhaC2Ps of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers. Shen XW; Shi ZY; Song G; Li ZJ; Chen GQ Appl Microbiol Biotechnol; 2011 Aug; 91(3):655-65. PubMed ID: 21509565 [TBL] [Abstract][Full Text] [Related]
7. Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid beta-oxidation inhibited Ralstonia eutropha. Green PR; Kemper J; Schechtman L; Guo L; Satkowski M; Fiedler S; Steinbüchel A; Rehm BH Biomacromolecules; 2002; 3(1):208-13. PubMed ID: 11866575 [TBL] [Abstract][Full Text] [Related]
8. Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: The key role of polyester synthases. Rehm BH Biotechnol Lett; 2006 Feb; 28(4):207-13. PubMed ID: 16555003 [TBL] [Abstract][Full Text] [Related]
9. Construction of pha-operon-defined knockout mutants of Pseudomonas putida KT2442 and their applications in poly(hydroxyalkanoate) production. Ouyang SP; Liu Q; Fang L; Chen GQ Macromol Biosci; 2007 Feb; 7(2):227-33. PubMed ID: 17295412 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of polyhydroxyalkanoates co-polymer in E. coli using genes from Pseudomonas and Bacillus. Davis R; Anilkumar PK; Chandrashekar A; Shamala TR Antonie Van Leeuwenhoek; 2008 Aug; 94(2):207-16. PubMed ID: 18357511 [TBL] [Abstract][Full Text] [Related]
11. Bacterial polyhydroxyalkanoates. Lee SY Biotechnol Bioeng; 1996 Jan; 49(1):1-14. PubMed ID: 18623547 [TBL] [Abstract][Full Text] [Related]
12. Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Ouyang SP; Luo RC; Chen SS; Liu Q; Chung A; Wu Q; Chen GQ Biomacromolecules; 2007 Aug; 8(8):2504-11. PubMed ID: 17661516 [TBL] [Abstract][Full Text] [Related]
13. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Chien LJ; Lee CK Biotechnol Prog; 2007; 23(5):1017-22. PubMed ID: 17691809 [TBL] [Abstract][Full Text] [Related]
14. Altered composition of Ralstonia eutropha poly(hydroxyalkanoate) through expression of PHA synthase from Allochromatium vinosum ATCC 35206. Aneja KK; Ashby RD; Solaiman DK Biotechnol Lett; 2009 Oct; 31(10):1601-12. PubMed ID: 19557308 [TBL] [Abstract][Full Text] [Related]
16. Molecular characterization of Pseudomonas sp. LDC-5 involved in accumulation of poly 3-hydroxybutyrate and medium-chain-length poly 3-hydroxyalkanoates. Sujatha K; Mahalakshmi A; Shenbagarathai R Arch Microbiol; 2007 Nov; 188(5):451-62. PubMed ID: 17653530 [TBL] [Abstract][Full Text] [Related]
17. Engineering Pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Li M; Chen X; Che X; Zhang H; Wu LP; Du H; Chen GQ Metab Eng; 2019 Mar; 52():253-262. PubMed ID: 30582985 [TBL] [Abstract][Full Text] [Related]
18. Production of D-arabitol by a metabolic engineered strain of Bacillus subtilis. Povelainen M; Miasnikov AN Biotechnol J; 2006 Feb; 1(2):214-9. PubMed ID: 16892251 [TBL] [Abstract][Full Text] [Related]
19. Biosynthesis and compositional regulation of poly[(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)] in recombinant ralstonia eutropha expressing mutated polyhydroxyalkanoate synthase genes. Tsuge T; Saito Y; Kikkawa Y; Hiraishi T; Doi Y Macromol Biosci; 2004 Mar; 4(3):238-42. PubMed ID: 15468213 [TBL] [Abstract][Full Text] [Related]
20. Expression and purification of pseudomonas aeruginosa keratinase in Bacillus subtilis DB104 expression system. Lin HH; Yin LJ; Jiang ST J Agric Food Chem; 2009 Sep; 57(17):7779-84. PubMed ID: 19722707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]