BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16916043)

  • 1. User subjectivity in Monte Carlo modeling of pesticide exposure.
    Beulke S; Brown CD; Dubus IG; Galicia H; Jarvis N; Schaefer D; Trevisan M
    Environ Toxicol Chem; 2006 Aug; 25(8):2227-36. PubMed ID: 16916043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of correlation between pesticide parameters on estimates of environmental exposure.
    Beulke S; Brown CD
    Pest Manag Sci; 2006 Jul; 62(7):603-9. PubMed ID: 16634004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Issues of replicability in Monte Carlo modeling: a case study with a pesticide leaching model.
    Dubus IG; Janssen PH
    Environ Toxicol Chem; 2003 Dec; 22(12):3081-7. PubMed ID: 14713053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Including spatial variability in Monte Carlo simulations of pesticide leaching.
    Leterme B; Vanclooster M; Van der Linden T; Tiktak A; Rounsevell MD
    Environ Sci Technol; 2007 Nov; 41(21):7444-50. PubMed ID: 18044524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation of uncertainties in soil and pesticide properties to pesticide leaching.
    van den Berg F; Tiktak A; Heuvelink GB; Burgers SL; Brus DJ; de Vries F; Stolte J; Kroes JG
    J Environ Qual; 2012; 41(1):253-61. PubMed ID: 22218193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity and first-step uncertainty analyses for the preferential flow model MACRO.
    Dubus IG; Brown CD
    J Environ Qual; 2002; 31(1):227-40. PubMed ID: 11837426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint propagation of variability and imprecision in assessing the risk of groundwater contamination.
    Baudrit C; Guyonnet D; Dubois D
    J Contam Hydrol; 2007 Aug; 93(1-4):72-84. PubMed ID: 17321003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Monte Carlo sampling shell for the pesticide root zone model and its application by the Federal Insecticide, Fungicide, and Rodenticide Act Environmental Modeling Validation Task Force.
    Havens PL; Carbone JP; Warren-Hicks W; Fouch MA
    Environ Toxicol Chem; 2002 Aug; 21(8):1566-9. PubMed ID: 12152755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and variance/covariance structure of pesticide environmental fate data.
    Spurlock F
    Environ Toxicol Chem; 2008 Aug; 27(8):1683-90. PubMed ID: 18384237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeled estimates of chlorpyrifos exposure and dose for the Minnesota and Arizona NHEXAS populations.
    Buck RJ; Ozkaynak H; Xue J; Zartarian VG; Hammerstrom K
    J Expo Anal Environ Epidemiol; 2001; 11(3):253-68. PubMed ID: 11477522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Monte Carlo techniques to judge model prediction accuracy: validation of the pesticide root zone model 3.12.
    Warren-Hicks W; Carbone JP; Havens PL
    Environ Toxicol Chem; 2002 Aug; 21(8):1570-7. PubMed ID: 12152756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of pesticide root zone model 3.12: leaching predictions with field data.
    Russell MH; Jones RL
    Environ Toxicol Chem; 2002 Aug; 21(8):1552-7. PubMed ID: 12152753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of pesticide root zone model 3.12: employing uncertainty analysis.
    Carbone JP; Havens PL; Warren-Hicks W
    Environ Toxicol Chem; 2002 Aug; 21(8):1578-90. PubMed ID: 12152757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probabilistic biosphere modeling for the long-term safety assessment of geological disposal facilities for radioactive waste using first- and second-order Monte Carlo simulation.
    Ciecior W; Röhlig KJ; Kirchner G
    J Environ Radioact; 2018 Oct; 190-191():10-19. PubMed ID: 29734123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty assessment of the model RICEWQ in northern Italy.
    Miao Z; Trevisan M; Capri E; Padovani L; Del Re AA
    J Environ Qual; 2004; 33(6):2217-28. PubMed ID: 15537945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sources of uncertainty in pesticide fate modelling.
    Dubus IG; Brown CD; Beulke S
    Sci Total Environ; 2003 Dec; 317(1-3):53-72. PubMed ID: 14630412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated probabilistic framework for cumulative risk assessment of common mechanism chemicals in food: an example with organophosphorus pesticides.
    Bosgra S; van der Voet H; Boon PE; Slob W
    Regul Toxicol Pharmacol; 2009 Jul; 54(2):124-33. PubMed ID: 19303907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte-Carlo human health risk assessment of mercury emissions from a MSW gasification plant.
    Lonati G; Zanoni F
    Waste Manag; 2013 Feb; 33(2):347-55. PubMed ID: 23177017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating uncertainty in terrestrial critical loads and their exceedances at four sites in the UK.
    Skeffington RA; Whitehead PG; Heywood E; Hall JR; Wadsworth RA; Reynolds B
    Sci Total Environ; 2007 Sep; 382(2-3):199-213. PubMed ID: 17555799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.