These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16916280)

  • 1. Ultrastructural study of iron oxide precipitates: implications for the search for biosignatures in the Meridiani hematite concretions, Mars.
    Souza-Egipsy V; Ormö J; Beitler Bowen B; Chan MA; Komatsu G
    Astrobiology; 2006 Aug; 6(4):527-45. PubMed ID: 16916280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating Mars Drilling Mission for Searching for Life:
    Sánchez-García L; Fernández-Martínez MA; Moreno-Paz M; Carrizo D; García-Villadangos M; Manchado JM; Stoker CR; Glass B; Parro V
    Astrobiology; 2020 Sep; 20(9):1029-1047. PubMed ID: 31916858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral properties of Lake Superior banded iron formation: application to Martian hematite deposits.
    Fallacaro A; Calvin WM
    Astrobiology; 2006 Aug; 6(4):563-80. PubMed ID: 16916283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of a martian hematite site for astrobiology.
    Allen CC; Westall F; Schelble RT
    Astrobiology; 2001; 1(1):111-23. PubMed ID: 12448998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study.
    Edwards HG; Vandenabeele P; Jorge-Villar SE; Carter EA; Perez FR; Hargreaves MD
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1133-7. PubMed ID: 17600759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Textural and mineralogical characteristics of microbial fossils associated with modern and ancient iron (oxyhydr)oxides: terrestrial analogue for sediments in Gale Crater.
    Potter-McIntyre SL; Chan MA; McPherson BJ
    Astrobiology; 2014 Jan; 14(1):1-14. PubMed ID: 24380534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of modern and old Río Tinto sedimentary deposits through the biomolecular record using a life marker biochip: implications for detecting life on Mars.
    Parro V; Fernández-Remolar D; Rodríguez-Manfredi JA; Cruz-Gil P; Rivas LA; Ruiz-Bermejo M; Moreno-Paz M; García-Villadangos M; Gómez-Ortiz D; Blanco-López Y; Menor-Salván C; Prieto-Ballesteros O; Gómez-Elvira J
    Astrobiology; 2011; 11(1):29-44. PubMed ID: 21294642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars.
    Squyres SW; Grotzinger JP; Arvidson RE; Bell JF; Calvin W; Christensen PR; Clark BC; Crisp JA; Farrand WH; Herkenhoff KE; Johnson JR; Klingelhöfer G; Knoll AH; McLennan SM; McSween HY; Morris RV; Rice JW; Rieder R; Soderblom LA
    Science; 2004 Dec; 306(5702):1709-14. PubMed ID: 15576604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California.
    Williams AJ; Sumner DY; Alpers CN; Karunatillake S; Hofmann BA
    Astrobiology; 2015 Aug; 15(8):637-68. PubMed ID: 26247371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars.
    Royle SH; Tan JSW; Watson JS; Sephton MA
    Astrobiology; 2021 Jun; 21(6):673-691. PubMed ID: 33635150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe-oxide concretions formed by interacting carbonate and acidic waters on Earth and Mars.
    Yoshida H; Hasegawa H; Katsuta N; Maruyama I; Sirono S; Minami M; Asahara Y; Nishimoto S; Yamaguchi Y; Ichinnorov N; Metcalfe R
    Sci Adv; 2018 Dec; 4(12):eaau0872. PubMed ID: 30525103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible-near infrared point spectrometry of drill core samples from Río Tinto, Spain: results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling exercise.
    Sutter B; Brown AJ; Stoker CR
    Astrobiology; 2008 Oct; 8(5):1049-60. PubMed ID: 19105759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geochemistry and Mineralogy of Western Australian Salt Lake Sediments: Implications for Meridiani Planum on Mars.
    Ruecker A; Schröder C; Byrne J; Weigold P; Behrens S; Kappler A
    Astrobiology; 2016 Jul; 16(7):525-38. PubMed ID: 27258848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jarosite and hematite at Meridiani Planum from Opportunity's Mossbauer Spectrometer.
    Klingelhöfer G; Morris RV; Bernhardt B; Schröder C; Rodionov DS; de Souza PA; Yen A; Gellert R; Evlanov EN; Zubkov B; Foh J; Bonnes U; Kankeleit E; Gütlich P; Ming DW; Renz F; Wdowiak T; Squyres SW; Arvidson RE
    Science; 2004 Dec; 306(5702):1740-5. PubMed ID: 15576610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underground habitats in the Río Tinto basin: a model for subsurface life habitats on Mars.
    Fernández-Remolar DC; Prieto-Ballesteros O; Rodríguez N; Gómez F; Amils R; Gómez-Elvira J; Stoker CR
    Astrobiology; 2008 Oct; 8(5):1023-47. PubMed ID: 19105758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hierarchical System for Evaluating the Biogenicity of Metavolcanic- and Ultramafic-Hosted Microalteration Textures in the Search for Extraterrestrial Life.
    McLoughlin N; Grosch EG
    Astrobiology; 2015 Oct; 15(10):901-21. PubMed ID: 26496528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A possible terrestrial analogue for haematite concretions on Mars.
    Chan MA; Beitler B; Parry WT; Ormö J; Komatsu G
    Nature; 2004 Jun; 429(6993):731-4. PubMed ID: 15201902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Spectral Comparison of Jarosites Using Techniques Relevant to the Robotic Exploration of Biosignatures on Mars.
    Loiselle L; McCraig MA; Dyar MD; Léveillé R; Shieh SR; Southam G
    Life (Basel); 2018 Dec; 8(4):. PubMed ID: 30563260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars.
    McCollom TM; Hynek BM
    Nature; 2005 Dec; 438(7071):1129-31. PubMed ID: 16372002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine identification in natural jarosites using laser desorption Fourier transform mass spectrometry: implications for the search for life on Mars.
    Kotler JM; Hinman NW; Yan B; Stoner DL; Scott JR
    Astrobiology; 2008 Apr; 8(2):253-66. PubMed ID: 18393691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.