These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 1691640)
21. Role of the foamy virus Pol cleavage site in viral replication. Roy J; Linial ML J Virol; 2007 May; 81(10):4956-62. PubMed ID: 17344283 [TBL] [Abstract][Full Text] [Related]
22. Substrate analogue inhibition and active site titration of purified recombinant HIV-1 protease. Tomasselli AG; Olsen MK; Hui JO; Staples DJ; Sawyer TK; Heinrikson RL; Tomich CS Biochemistry; 1990 Jan; 29(1):264-9. PubMed ID: 2182116 [TBL] [Abstract][Full Text] [Related]
23. Proteolytic cleavage at the Gag-Pol junction in avian leukosis virus: differences in vitro and in vivo. Stewart L; Vogt VM Virology; 1994 Oct; 204(1):45-59. PubMed ID: 7522375 [TBL] [Abstract][Full Text] [Related]
24. Sub-site preferences of the aspartic proteinase from the human immunodeficiency virus, HIV-1. Konvalinka J; Strop P; Velek J; Cerna V; Kostka V; Phylip LH; Richards AD; Dunn BM; Kay J FEBS Lett; 1990 Jul; 268(1):35-8. PubMed ID: 2200711 [TBL] [Abstract][Full Text] [Related]
25. Hydrolysis of synthetic chromogenic substrates by HIV-1 and HIV-2 proteinases. Phylip LH; Richards AD; Kay J; Kovalinka J; Strop P; Blaha I; Velek J; Kostka V; Ritchie AJ; Broadhurst AV Biochem Biophys Res Commun; 1990 Aug; 171(1):439-44. PubMed ID: 2203349 [TBL] [Abstract][Full Text] [Related]
26. Glutamic residue 438 within the protease-sensitive subdomain of HIV-1 reverse transcriptase is critical for heterodimer processing in viral particles. Navarro JM; Damier L; Boretto J; Priet S; Canard B; Quérat G; Sire J Virology; 2001 Nov; 290(2):300-8. PubMed ID: 11883194 [TBL] [Abstract][Full Text] [Related]
27. Characterization of the p68/p58 heterodimer of human immunodeficiency virus type 2 reverse transcriptase. Fan N; Rank KB; Poppe SM; Tarpley WG; Sharma SK Biochemistry; 1996 Feb; 35(6):1911-7. PubMed ID: 8639674 [TBL] [Abstract][Full Text] [Related]
28. Design, activity, and 2.8 A crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease. Erickson J; Neidhart DJ; VanDrie J; Kempf DJ; Wang XC; Norbeck DW; Plattner JJ; Rittenhouse JW; Turon M; Wideburg N Science; 1990 Aug; 249(4968):527-33. PubMed ID: 2200122 [TBL] [Abstract][Full Text] [Related]
29. Extensive regions of pol are required for efficient human immunodeficiency virus polyprotein processing and particle maturation. Quillent C; Borman AM; Paulous S; Dauguet C; Clavel F Virology; 1996 May; 219(1):29-36. PubMed ID: 8623542 [TBL] [Abstract][Full Text] [Related]
30. Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. Erickson-Viitanen S; Manfredi J; Viitanen P; Tribe DE; Tritch R; Hutchison CA; Loeb DD; Swanstrom R AIDS Res Hum Retroviruses; 1989 Dec; 5(6):577-91. PubMed ID: 2692658 [TBL] [Abstract][Full Text] [Related]
31. Enzyme activities in four different forms of human immunodeficiency virus 1 pol gene products. Hu YW; Kang CY Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4596-600. PubMed ID: 1711203 [TBL] [Abstract][Full Text] [Related]
32. Synthetic HIV-2 protease cleaves the GAG precursor of HIV-1 with the same specificity as HIV-1 protease. Wu JC; Carr SF; Jarnagin K; Kirsher S; Barnett J; Chow J; Chan HW; Chen MS; Medzihradszky D; Yamashiro D Arch Biochem Biophys; 1990 Mar; 277(2):306-11. PubMed ID: 2178555 [TBL] [Abstract][Full Text] [Related]
33. Autoprocessing of the human immunodeficiency virus type 1 protease precursor expressed in Escherichia coli from a synthetic gene. Valverde V; Lemay P; Masson JM; Gay B; Boulanger P J Gen Virol; 1992 Mar; 73 ( Pt 3)():639-51. PubMed ID: 1545221 [TBL] [Abstract][Full Text] [Related]
34. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Shoeman RL; Höner B; Stoller TJ; Kesselmeier C; Miedel MC; Traub P; Graves MC Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6336-40. PubMed ID: 2201025 [TBL] [Abstract][Full Text] [Related]
35. High-level synthesis of recombinant HIV-1 protease and the recovery of active enzyme from inclusion bodies. Cheng YS; McGowan MH; Kettner CA; Schloss JV; Erickson-Viitanen S; Yin FH Gene; 1990 Mar; 87(2):243-8. PubMed ID: 2158928 [TBL] [Abstract][Full Text] [Related]
36. Cleavage of recombinant and cell derived human immunodeficiency virus 1 (HIV-1) Nef protein by HIV-1 protease. Gaedigk-Nitschko K; Schön A; Wachinger G; Erfle V; Kohleisen B FEBS Lett; 1995 Jan; 357(3):275-8. PubMed ID: 7835426 [TBL] [Abstract][Full Text] [Related]
37. Substitution of proline with pipecolic acid at the scissile bond converts a peptide substrate of HIV proteinase into a selective inhibitor. Copeland TD; Wondrak EM; Tozser J; Roberts MM; Oroszlan S Biochem Biophys Res Commun; 1990 May; 169(1):310-4. PubMed ID: 2190554 [TBL] [Abstract][Full Text] [Related]
38. Rational design of peptide-based HIV proteinase inhibitors. Roberts NA; Martin JA; Kinchington D; Broadhurst AV; Craig JC; Duncan IB; Galpin SA; Handa BK; Kay J; Kröhn A Science; 1990 Apr; 248(4953):358-61. PubMed ID: 2183354 [TBL] [Abstract][Full Text] [Related]
39. Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Matayoshi ED; Wang GT; Krafft GA; Erickson J Science; 1990 Feb; 247(4945):954-8. PubMed ID: 2106161 [TBL] [Abstract][Full Text] [Related]
40. The large subunit of HIV-1 reverse transcriptase interacts with beta-actin. Hottiger M; Gramatikoff K; Georgiev O; Chaponnier C; Schaffner W; Hübscher U Nucleic Acids Res; 1995 Mar; 23(5):736-41. PubMed ID: 7535922 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]