BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 16916449)

  • 1. Strand bias in complementary single-nucleotide polymorphisms of transcribed human sequences: evidence for functional effects of synonymous polymorphisms.
    Qu HQ; Lawrence SG; Guo F; Majewski J; Polychronakos C
    BMC Genomics; 2006 Aug; 7():213. PubMed ID: 16916449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence context analysis of 8.2 million single nucleotide polymorphisms in the human genome.
    Zhao Z; Zhang F
    Gene; 2006 Feb; 366(2):316-24. PubMed ID: 16314054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directionality of point mutation and 5-methylcytosine deamination rates in the chimpanzee genome.
    Jiang C; Zhao Z
    BMC Genomics; 2006 Dec; 7():316. PubMed ID: 17166280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of neighboring-nucleotide composition on single nucleotide polymorphisms (SNPs) in the mouse genome and its comparison with human SNPs.
    Zhang F; Zhao Z
    Genomics; 2004 Nov; 84(5):785-95. PubMed ID: 15475257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational spectrum in the recent human genome inferred by single nucleotide polymorphisms.
    Jiang C; Zhao Z
    Genomics; 2006 Nov; 88(5):527-34. PubMed ID: 16860534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence context analysis in the mouse genome: single nucleotide polymorphisms and CpG island sequences.
    Zhao Z; Zhang F
    Genomics; 2006 Jan; 87(1):68-74. PubMed ID: 16316740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neighboring-nucleotide effects on single nucleotide polymorphisms: a study of 2.6 million polymorphisms across the human genome.
    Zhao Z; Boerwinkle E
    Genome Res; 2002 Nov; 12(11):1679-86. PubMed ID: 12421754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico discrimination of single nucleotide polymorphisms and pathological mutations in human gene promoter regions by means of local DNA sequence context and regularity.
    Khan IA; Mort M; Buckland PR; O'Donovan MC; Cooper DN; Chuzhanova NA
    In Silico Biol; 2006; 6(1-2):23-34. PubMed ID: 16789908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the effect of CpG hypermutability on human codon substitution.
    Misawa K; Kikuno RF
    Gene; 2009 Feb; 431(1-2):18-22. PubMed ID: 19059467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CpG mutation rates in the human genome are highly dependent on local GC content.
    Fryxell KJ; Moon WJ
    Mol Biol Evol; 2005 Mar; 22(3):650-8. PubMed ID: 15537806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human SNPs reveal no evidence of frequent positive selection.
    Zhang L; Li WH
    Mol Biol Evol; 2005 Dec; 22(12):2504-7. PubMed ID: 16107590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters.
    Saxonov S; Berg P; Brutlag DL
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1412-7. PubMed ID: 16432200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong and weak male mutation bias at different sites in the primate genomes: insights from the human-chimpanzee comparison.
    Taylor J; Tyekucheva S; Zody M; Chiaromonte F; Makova KD
    Mol Biol Evol; 2006 Mar; 23(3):565-73. PubMed ID: 16280537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodicity of SNP distribution around transcription start sites.
    Higasa K; Hayashi K
    BMC Genomics; 2006 Apr; 7():66. PubMed ID: 16579865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Context-dependent mutation rates may cause spurious signatures of a fixation bias favoring higher GC-content in humans.
    Hernandez RD; Williamson SH; Zhu L; Bustamante CD
    Mol Biol Evol; 2007 Oct; 24(10):2196-202. PubMed ID: 17656634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection in favor of nucleotides G and C diversifies evolution rates and levels of polymorphism at mammalian synonymous sites.
    Kondrashov FA; Ogurtsov AY; Kondrashov AS
    J Theor Biol; 2006 Jun; 240(4):616-26. PubMed ID: 16343547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection on human genes as revealed by comparisons to chimpanzee cDNA.
    Hellmann I; Zollner S; Enard W; Ebersberger I; Nickel B; Paabo S
    Genome Res; 2003 May; 13(5):831-7. PubMed ID: 12727903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Chimpanzee genome sequencing and comparative analysis with the human genome].
    Watanabe H; Hattori M
    Tanpakushitsu Kakusan Koso; 2006 Feb; 51(2):178-87. PubMed ID: 16457209
    [No Abstract]   [Full Text] [Related]  

  • 19. Similar rates but different modes of sequence evolution in introns and at exonic silent sites in rodents: evidence for selectively driven codon usage.
    Chamary JV; Hurst LD
    Mol Biol Evol; 2004 Jun; 21(6):1014-23. PubMed ID: 15014158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes.
    Nakken S; Alseth I; Rognes T
    Neuroscience; 2007 Apr; 145(4):1273-9. PubMed ID: 17055652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.