These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16916460)

  • 1. A combinatorial optimization approach for diverse motif finding applications.
    Zaslavsky E; Singh M
    Algorithms Mol Biol; 2006 Aug; 1():13. PubMed ID: 16916460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cost-aggregating integer linear program for motif finding.
    Kingsford C; Zaslavsky E; Singh M
    J Discrete Algorithms (Amst); 2011 Dec; 9(4):326-334. PubMed ID: 22081765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MotifCut: regulatory motifs finding with maximum density subgraphs.
    Fratkin E; Naughton BT; Brutlag DL; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e150-7. PubMed ID: 16873465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering motifs in ranked lists of DNA sequences.
    Eden E; Lipson D; Yogev S; Yakhini Z
    PLoS Comput Biol; 2007 Mar; 3(3):e39. PubMed ID: 17381235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cluster refinement algorithm for motif discovery.
    Li G; Chan TM; Leung KS; Lee KH
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):654-68. PubMed ID: 21030733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.
    Liu B; Zhang H; Zhou C; Li G; Fennell A; Wang G; Kang Y; Liu Q; Ma Q
    BMC Genomics; 2016 Aug; 17():578. PubMed ID: 27507169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes.
    Tong H; Schliekelman P; Mrázek J
    BMC Genomics; 2017 Jan; 18(1):27. PubMed ID: 28056763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bases of motifs for generating repeated patterns with wild cards.
    Pisanti N; Crochemore M; Grossi R; Sagot MF
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(1):40-50. PubMed ID: 17044163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.
    Lyubetsky V; Gershgorin R; Gorbunov K
    BMC Bioinformatics; 2017 Dec; 18(1):537. PubMed ID: 29212445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphical approach to weak motif recognition.
    Yang X; Rajapakse JC
    Genome Inform; 2004; 15(2):52-62. PubMed ID: 15706491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voting algorithms for the motif finding problem.
    Liu X; Ma B; Wang L
    Comput Syst Bioinformatics Conf; 2008; 7():37-47. PubMed ID: 19642267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Gibbs sampling method for motif finding in DNA with initial graph representation of sequences.
    Stepančič Z
    J Comput Biol; 2014 Oct; 21(10):741-52. PubMed ID: 25121709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding motifs using random projections.
    Buhler J; Tompa M
    J Comput Biol; 2002; 9(2):225-42. PubMed ID: 12015879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient sequential and parallel algorithms for finding edit distance based motifs.
    Pal S; Xiao P; Rajasekaran S
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):465. PubMed ID: 27557423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct vs 2-stage approaches to structured motif finding.
    Federico M; Leoncini M; Montangero M; Valente P
    Algorithms Mol Biol; 2012 Aug; 7(1):20. PubMed ID: 22908910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The imperfect ancestral recombination graph reconstruction problem: upper bounds for recombination and homoplasy.
    Lam F; Tarpine R; Istrail S
    J Comput Biol; 2010 Jun; 17(6):767-81. PubMed ID: 20583925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Applications of the motif-programmed proteins in medical area].
    Shiba K
    Yakugaku Zasshi; 2009 Nov; 129(11):1295-302. PubMed ID: 19881200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algorithms for phylogenetic footprinting.
    Blanchette M; Schwikowski B; Tompa M
    J Comput Biol; 2002; 9(2):211-23. PubMed ID: 12015878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-objective imperialist competitive algorithm (MOICA) for finding motifs in DNA sequences.
    Gohardani SA; Bagherian M; Vaziri H
    Math Biosci Eng; 2019 Feb; 16(3):1575-1596. PubMed ID: 30947433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding motifs with insufficient number of strong binding sites.
    Leung HC; Chin FY; Yiu SM; Rosenfeld R; Tsang WW
    J Comput Biol; 2005; 12(6):686-701. PubMed ID: 16108711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.