These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16916792)

  • 1. Identification by Mn2+ rescue of two residues essential for the proton transfer of tRNase Z catalysis.
    Minagawa A; Takaku H; Ishii R; Takagi M; Yokoyama S; Nashimoto M
    Nucleic Acids Res; 2006; 34(13):3811-8. PubMed ID: 16916792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flexible arm of tRNase Z is not essential for pre-tRNA binding but affects cleavage site selection.
    Minagawa A; Ishii R; Takaku H; Yokoyama S; Nashimoto M
    J Mol Biol; 2008 Aug; 381(2):289-99. PubMed ID: 18602113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analyses for tRNase Z variants: an aspartate and a histidine in the active site are essential for the catalytic activity.
    Elbarbary RA; Takaku H; Nashimoto M
    Biochim Biophys Acta; 2008 Dec; 1784(12):2079-85. PubMed ID: 18809514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-terminal half-domain of the long form of tRNase Z is required for the RNase 65 activity.
    Takaku H; Minagawa A; Takagi M; Nashimoto M
    Nucleic Acids Res; 2004; 32(15):4429-38. PubMed ID: 15317868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residues in the conserved His domain of fruit fly tRNase Z that function in catalysis are not involved in substrate recognition or binding.
    Zareen N; Yan H; Hopkinson A; Levinger L
    J Mol Biol; 2005 Jul; 350(2):189-99. PubMed ID: 15935379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the tRNA 3' processing endoribonuclease tRNase Z from Thermotoga maritima.
    Ishii R; Minagawa A; Takaku H; Takagi M; Nashimoto M; Yokoyama S
    J Biol Chem; 2005 Apr; 280(14):14138-44. PubMed ID: 15701599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal requirements and phosphodiesterase activity of tRNase Z enzymes.
    Späth B; Settele F; Schilling O; D'Angelo I; Vogel A; Feldmann I; Meyer-Klaucke W; Marchfelder A
    Biochemistry; 2007 Dec; 46(51):14742-50. PubMed ID: 18052196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel endonucleolytic mechanism to generate the CCA 3' termini of tRNA molecules in Thermotoga maritima.
    Minagawa A; Takaku H; Takagi M; Nashimoto M
    J Biol Chem; 2004 Apr; 279(15):15688-97. PubMed ID: 14749326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unstructured RNA is a substrate for tRNase Z.
    Shibata HS; Minagawa A; Takaku H; Takagi M; Nashimoto M
    Biochemistry; 2006 May; 45(17):5486-92. PubMed ID: 16634630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two archaeal tRNase Z enzymes: similar but different.
    Späth B; Schubert S; Lieberoth A; Settele F; Schütz S; Fischer S; Marchfelder A
    Arch Microbiol; 2008 Sep; 190(3):301-8. PubMed ID: 18437358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Participation of the 3'-CCA of tRNA in the binding of catalytic Mg2+ ions by ribonuclease P.
    Oh BK; Frank DN; Pace NR
    Biochemistry; 1998 May; 37(20):7277-83. PubMed ID: 9585541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate recognition ability differs among various prokaryotic tRNase Zs.
    Minagawa A; Takaku H; Shibata HS; Ishii R; Takagi M; Yokoyama S; Nashimoto M
    Biochem Biophys Res Commun; 2006 Jun; 345(1):385-93. PubMed ID: 16681995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific cleavage of target RNAs from HIV-1 with 5' half tRNA by mammalian tRNA 3' processing endoribonuclease.
    Nashimoto M
    RNA; 1996 Jun; 2(6):523-4. PubMed ID: 8718682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli tRNase Z can shut down growth probably by removing amino acids from aminoacyl-tRNAs.
    Takaku H; Nashimoto M
    Genes Cells; 2008 Nov; 13(11):1087-97. PubMed ID: 18823332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of cleavage site by mammalian tRNA 3' processing endoribonuclease.
    Nashimoto M; Tamura M; Kaspar RL
    J Mol Biol; 1999 Apr; 287(4):727-40. PubMed ID: 10191141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residues in two homology blocks on the amino side of the tRNase Z His domain contribute unexpectedly to pre-tRNA 3' end processing.
    Zareen N; Hopkinson A; Levinger L
    RNA; 2006 Jun; 12(6):1104-15. PubMed ID: 16618969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. tRNase Z catalysis and conserved residues on the carboxy side of the His cluster.
    Karkashon S; Hopkinson A; Levinger L
    Biochemistry; 2007 Aug; 46(33):9380-7. PubMed ID: 17655328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of the flexible arm of Thermotoga maritima tRNase Z differs from those of homologous enzymes.
    Ishii R; Minagawa A; Takaku H; Takagi M; Nashimoto M; Yokoyama S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Aug; 63(Pt 8):637-41. PubMed ID: 17671357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR spectroscopic evidence for Mn(2+)(Mg(2+)) binding to a precursor-tRNA microhelix near the potential RNase P cleavage site.
    Zuleeg T; Hartmann RK; Kreutzer R; Limmer S
    J Mol Biol; 2001 Jan; 305(2):181-9. PubMed ID: 11124898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel 4-base-recognizing RNA cutter that can remove the single 3' terminal nucleotides from RNA molecules.
    Takaku H; Minagawa A; Takagi M; Nashimoto M
    Nucleic Acids Res; 2004; 32(11):e91. PubMed ID: 15247324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.