These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 16916929)

  • 41. The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain.
    Sridevi K; Juneja J; Bhuyan AK; Krishnamoorthy G; Udgaonkar JB
    J Mol Biol; 2000 Sep; 302(2):479-95. PubMed ID: 10970747
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Important amino acid residues involved in folding and binding of protein-protein complexes.
    Kulandaisamy A; Lathi V; ViswaPoorani K; Yugandhar K; Gromiha MM
    Int J Biol Macromol; 2017 Jan; 94(Pt A):438-444. PubMed ID: 27765571
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Statistical analysis of protein structures suggests that buried ionizable residues in proteins are hydrogen bonded or form salt bridges.
    Bush J; Makhatadze GI
    Proteins; 2011 Jul; 79(7):2027-32. PubMed ID: 21560169
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simple Physics-Based Analytical Formulas for the Potentials of Mean Force of the Interaction of Amino Acid Side Chains in Water. VII. Charged-Hydrophobic/Polar and Polar-Hydrophobic/Polar Side Chains.
    Makowski M; Liwo A; Scheraga HA
    J Phys Chem B; 2017 Jan; 121(2):379-390. PubMed ID: 28000446
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic selection reveals the role of a buried, conserved polar residue.
    Johnson RJ; Lin SR; Raines RT
    Protein Sci; 2007 Aug; 16(8):1609-16. PubMed ID: 17656580
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the influence of charged side chains on the folding-unfolding equilibrium of beta-peptides: a molecular dynamics simulation study.
    Glättli A; Daura X; Bindschädler P; Jaun B; Mahajan YR; Mathad RI; Rueping M; Seebach D; van Gunsteren WF
    Chemistry; 2005 Dec; 11(24):7276-93. PubMed ID: 16247825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Method for calculation of low-energy conformations of alpha-helical pairs of globular proteins].
    Solov'ev VV; Kolchanov HA
    Mol Biol (Mosk); 1981; 15(2):323-35. PubMed ID: 7242533
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Peptide backbone effect on hydration free energies of amino acid side chains.
    Hajari T; van der Vegt NF
    J Phys Chem B; 2014 Nov; 118(46):13162-8. PubMed ID: 25338222
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Folding of beta/alpha-unit scrambled forms of S. cerevisiae triosephosphate isomerase: Evidence for autonomy of substructure formation and plasticity of hydrophobic and hydrogen bonding interactions in core of (beta/alpha)8-barrel.
    Shukla A; Guptasarma P
    Proteins; 2004 May; 55(3):548-57. PubMed ID: 15103619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification and Analysis of Key Residues Involved in Folding and Binding of Protein-carbohydrate Complexes.
    Shanmugam NRS; Selvin JFA; Veluraja K; Gromiha MM
    Protein Pept Lett; 2018; 25(4):379-389. PubMed ID: 29473490
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intramolecular interactions in pancreatic ribonucleases.
    Kolbanovskaya EYu ; Sathyanarayana BK; Wlodawer A; Karpeisky MYa
    Protein Sci; 1992 Aug; 1(8):1050-60. PubMed ID: 1304382
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration.
    Privalov PL; Makhatadze GI
    J Mol Biol; 1993 Jul; 232(2):660-79. PubMed ID: 8393941
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The contribution of the residues from the main hydrophobic core of ribonuclease A to its pressure-folding transition state.
    Font J; Benito A; Lange R; Ribó M; Vilanova M
    Protein Sci; 2006 May; 15(5):1000-9. PubMed ID: 16597833
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Entropy reduction effect imposed by hydrogen bond formation on protein folding cooperativity: evidence from a hydrophobic minimalist model.
    Barbosa MA; Garcia LG; Pereira de Araújo AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051903. PubMed ID: 16383641
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct analysis of backbone-backbone hydrogen bond formation in protein folding transition states.
    Yang X; Wang M; Fitzgerald MC
    J Mol Biol; 2006 Oct; 363(2):506-19. PubMed ID: 16963082
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single polymer studies of hydrophobic hydration.
    Li IT; Walker GC
    Acc Chem Res; 2012 Nov; 45(11):2011-21. PubMed ID: 22568748
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adding backbone to protein folding: why proteins are polypeptides.
    Honig B; Cohen FE
    Fold Des; 1996; 1(1):R17-20. PubMed ID: 9079357
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Analysis of interactions of buried polar side chains in beta-proteins].
    Brazhnikov EV; Efimov AV
    Mol Biol (Mosk); 2005; 39(5):878-86. PubMed ID: 16240721
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of protein fragments identified by limited proteolysis and by computational cutting of proteins.
    Tsai CJ; Polverino de Laureto P; Fontana A; Nussinov R
    Protein Sci; 2002 Jul; 11(7):1753-70. PubMed ID: 12070328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simulation studies of protein folding/unfolding equilibrium under polar and nonpolar confinement.
    Tian J; Garcia AE
    J Am Chem Soc; 2011 Sep; 133(38):15157-64. PubMed ID: 21854029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.