BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16917661)

  • 1. Formation of vortices near abrupt nano-channel height changes in electro-osmotic flow of aqueous solutions.
    Ramirez JC; Conlisk AT
    Biomed Microdevices; 2006 Dec; 8(4):325-30. PubMed ID: 16917661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroosmotic flow and particle transport in micro/nano nozzles and diffusers.
    Chen L; Conlisk AT
    Biomed Microdevices; 2008 Apr; 10(2):289-98. PubMed ID: 18034305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonuniform electro-osmotic flow on charged strips and its use in particle trapping.
    Liu SJ; Hwang SH; Wei HH
    Langmuir; 2008 Dec; 24(23):13776-89. PubMed ID: 18956894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Starting electroosmotic flow in an annulus and in a rectangular channel.
    Chang CC; Wang CY
    Electrophoresis; 2008 Jul; 29(14):2970-9. PubMed ID: 18655036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.
    Gillespie D; Pennathur S
    Anal Chem; 2013 Mar; 85(5):2991-8. PubMed ID: 23368674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational models in nano-bioelectronics: simulation of ionic transport in voltage operated channels.
    Longaretti M; Marino G; Chini B; Jerome JW; Sacco R
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3686-94. PubMed ID: 19051926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of induced-charge electro-osmotic flow in a microchannel embedded with polarizable dielectric blocks.
    Zhao C; Yang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046312. PubMed ID: 19905441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoscopic simulations of the counterion-induced electro-osmotic flow: a comparative study.
    Smiatek J; Sega M; Holm C; Schiller UD; Schmid F
    J Chem Phys; 2009 Jun; 130(24):244702. PubMed ID: 19566169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterning electro-osmotic flow with patterned surface charge.
    Stroock AD; Weck M; Chiu DT; Huck WT; Kenis PJ; Ismagilov RF; Whitesides GM
    Phys Rev Lett; 2000 Apr; 84(15):3314-7. PubMed ID: 11019078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels.
    Conlisk AT
    Electrophoresis; 2005 May; 26(10):1896-912. PubMed ID: 15832301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of electro-osmotic flow characteristics at joint of capillaries with step change in zeta-potential and dimension.
    Ruijin W; Jianzhong L; Zhihua L
    Biomed Microdevices; 2005 Jun; 7(2):131-5. PubMed ID: 15940427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electro-osmotic flow in polygonal ducts.
    Wang CY; Chang CC
    Electrophoresis; 2011 Jun; 32(11):1268-72. PubMed ID: 21538403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of charged species separation by autogenous electric field-flow fractionation in nano-scale channels.
    Griffiths SK; Nilson RH
    Electrophoresis; 2010 Mar; 31(5):832-42. PubMed ID: 20191545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane transport of the non-homogeneous non-electrolyte solutions: mathematical model based on the Kedem-Katchalsky and Rayleigh equations.
    Slezak A
    Polim Med; 2007; 37(1):57-66. PubMed ID: 17703724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the influence of fibrous pericellular matrix in the cortical interstitial fluid movement with hydroelectrochemical effects.
    Lemaire T; Naïli S; Rémond A
    J Biomech Eng; 2008 Feb; 130(1):011001. PubMed ID: 18298177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mathematical model of the membrane transport of ternary non-electrolyte solutions: the role of volume flows in creation of concentration boundary layers].
    Jasik-Slezak J; Slezak A
    Polim Med; 2007; 37(1):73-9. PubMed ID: 17703726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion separation in nanofluidics.
    Xuan X
    Electrophoresis; 2008 Sep; 29(18):3737-43. PubMed ID: 18850643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of transport in nanofluidic channels with moderately thin electrical double layers: effect of the wall potential modulation on solutions of symmetric and asymmetric electrolytes.
    Petsev DN
    J Chem Phys; 2005 Dec; 123(24):244907. PubMed ID: 16396573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Study of Electro-Osmotic Fluid Flow and Vortex Formation.
    Bezerra WS; Castelo A; Afonso AM
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31757052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical prediction of fast 3D AC electro-osmotic pumps.
    Bazant MZ; Ben Y
    Lab Chip; 2006 Nov; 6(11):1455-61. PubMed ID: 17066170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.