These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 16917954)
1. Detection of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC-labeled antibody. Taguchi T; Arakaki A; Takeyama H; Haraguchi S; Yoshino M; Kaneko M; Ishimori Y; Matsunaga T Biotechnol Bioeng; 2007 Feb; 96(2):272-80. PubMed ID: 16917954 [TBL] [Abstract][Full Text] [Related]
2. Immuno-capture of Cryptosporidium parvum using micro-well array. Taguchi T; Takeyama H; Matsunaga T Biosens Bioelectron; 2005 May; 20(11):2276-82. PubMed ID: 15797326 [TBL] [Abstract][Full Text] [Related]
3. Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum. Lee LY; Ong SL; Hu JY; Ng WJ; Feng Y; Tan X; Wong SW Appl Environ Microbiol; 2004 Oct; 70(10):5732-6. PubMed ID: 15466507 [TBL] [Abstract][Full Text] [Related]
4. Improvement of recoveries for the determination of protozoa Cryptosporidium and Giardia in water using method 1623. Hu J; Feng Y; Ong SL; Ng WJ; Song L; Tan X; Chu X J Microbiol Methods; 2004 Sep; 58(3):321-5. PubMed ID: 15279936 [TBL] [Abstract][Full Text] [Related]
5. Field-deployable and near-real-time optical microfluidic biosensors for single-oocyst-level detection of Cryptosporidium parvum from field water samples. Angus SV; Kwon HJ; Yoon JY J Environ Monit; 2012 Dec; 14(12):3295-304. PubMed ID: 23152174 [TBL] [Abstract][Full Text] [Related]
6. Detection and discrimination of Cryptosporidium parvum and C. hominis in water samples by immunomagnetic separation-PCR. Ochiai Y; Takada C; Hosaka M Appl Environ Microbiol; 2005 Feb; 71(2):898-903. PubMed ID: 15691946 [TBL] [Abstract][Full Text] [Related]
7. Comparison of most probable number-PCR and most probable number-foci detection method for quantifying infectious Cryptosporidium parvum oocysts in environmental samples. Carey CM; Lee H; Trevors JT J Microbiol Methods; 2006 Nov; 67(2):363-72. PubMed ID: 16730821 [TBL] [Abstract][Full Text] [Related]
8. Surface plasmon resonance-based inhibition assay for real-time detection of Cryptosporidium parvum oocyst. Kang CD; Cao C; Lee J; Choi IS; Kim BW; Sim SJ Water Res; 2008 Mar; 42(6-7):1693-9. PubMed ID: 17988710 [TBL] [Abstract][Full Text] [Related]
9. Detection of UV-induced thymine dimers in individual Cryptosporidium parvum and Cryptosporidium hominis oocysts by immunofluorescence microscopy. Al-Adhami BH; Nichols RA; Kusel JR; O'Grady J; Smith HV Appl Environ Microbiol; 2007 Feb; 73(3):947-55. PubMed ID: 17012589 [TBL] [Abstract][Full Text] [Related]
10. Direct counting of Cryptosporidium parvum oocysts using fluorescence in situ hybridization on a membrane filter. Taguchi T; Shinozaki Y; Takeyama H; Haraguchi S; Yoshino M; Kaneko M; Ishimori Y; Matsunaga T J Microbiol Methods; 2006 Nov; 67(2):373-80. PubMed ID: 16793153 [TBL] [Abstract][Full Text] [Related]
11. Die-off of Cryptosporidium parvum in soil and wastewater effluents. Nasser AM; Tweto E; Nitzan Y J Appl Microbiol; 2007 Jan; 102(1):169-76. PubMed ID: 17184332 [TBL] [Abstract][Full Text] [Related]
12. Characterization and potential use of a Cryptosporidium parvum virus (CPV) antigen for detecting C. parvum oocysts. Kniel KE; Higgins JA; Trout JM; Fayer R; Jenkins MC J Microbiol Methods; 2004 Aug; 58(2):189-95. PubMed ID: 15234516 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Cryptosporidium parvum oocyst recovery efficiencies from various filtration cartridges by electrochemiluminescence assays. Lee Y; Gomez LL; McAuliffe IT; Tsang VC Lett Appl Microbiol; 2004; 39(2):156-62. PubMed ID: 15242454 [TBL] [Abstract][Full Text] [Related]
14. Immunoassay for viable Cryptosporidium parvum oocysts in turbid environmental water samples. Call JL; Arrowood M; Xie LT; Hancock K; Tsang VC J Parasitol; 2001 Feb; 87(1):203-10. PubMed ID: 11227892 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of methods for improved detection of Cryptosporidium spp. in mussels (Mytilus californianus). Miller WA; Gardner IA; Atwill ER; Leutenegger CM; Miller MA; Hedrick RP; Melli AC; Barnes NM; Conrad PA J Microbiol Methods; 2006 Jun; 65(3):367-79. PubMed ID: 16181691 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of Cryptosporidium parvum infection of a mammalian cell culture by recombinant scFv antibodies. Pokorny NJ; Boulter-Bitzer JI; Hall JC; Trevors JT; Lee H Antonie Van Leeuwenhoek; 2008 Oct; 94(3):353-64. PubMed ID: 18581250 [TBL] [Abstract][Full Text] [Related]
17. Recovery and detection of Cryptosporidium parvum oocysts from water samples using continuous flow centrifugation. Higgins JA; Trout JM; Fayer R; Shelton D; Jenkins MC Water Res; 2003 Sep; 37(15):3551-60. PubMed ID: 12867321 [TBL] [Abstract][Full Text] [Related]
18. Effect of batch-process solar disinfection on survival of Cryptosporidium parvum oocysts in drinking water. Méndez-Hermida F; Castro-Hermida JA; Ares-Mazás E; Kehoe SC; McGuigan KG Appl Environ Microbiol; 2005 Mar; 71(3):1653-4. PubMed ID: 15746372 [TBL] [Abstract][Full Text] [Related]
19. Clams (Corbicula fluminea) as bioindicators of fecal contamination with Cryptosporidium and Giardia spp. in freshwater ecosystems in California. Miller WA; Atwill ER; Gardner IA; Miller MA; Fritz HM; Hedrick RP; Melli AC; Barnes NM; Conrad PA Int J Parasitol; 2005 May; 35(6):673-84. PubMed ID: 15862580 [TBL] [Abstract][Full Text] [Related]
20. Cryptosporidium parvum oocysts recovered from water by the membrane filter dissolution method retain their infectivity. Graczyk TK; Fayer R; Cranfield MR; Owens R J Parasitol; 1997 Feb; 83(1):111-4. PubMed ID: 9057705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]