BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16918294)

  • 1. Novel approach in radionuclide tumor therapy: dose enhancement by high Z-element contrast agents.
    Aziz EF; Bugaj JE; Caglar G; Dinkelborg LM; Lawaczeck R
    Cancer Biother Radiopharm; 2006 Jun; 21(3):181-93. PubMed ID: 16918294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement.
    Delorme R; Taupin F; Flaender M; Ravanat JL; Champion C; Agelou M; Elleaume H
    Med Phys; 2017 Nov; 44(11):5949-5960. PubMed ID: 28886212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy.
    Zhang DG; Feygelman V; Moros EG; Latifi K; Zhang GG
    PLoS One; 2014; 9(10):e109389. PubMed ID: 25275550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation and modelling of megavoltage photon beams for contrast-enhanced radiation therapy.
    Robar JL
    Phys Med Biol; 2006 Nov; 51(21):5487-504. PubMed ID: 17047265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy.
    Paro AD; Hossain M; Webster TJ; Su M
    Int J Nanomedicine; 2016; 11():4735-4741. PubMed ID: 27695329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning.
    Alexander A; Deblois F; Stroian G; Al-Yahya K; Heath E; Seuntjens J
    Phys Med Biol; 2007 Jul; 52(13):N297-308. PubMed ID: 17664568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-fire doses from beta-emitting radionuclides in targeted radiotherapy. A theoretical study based on experimentally measured tumor characteristics.
    Enger SA; Hartman T; Carlsson J; Lundqvist H
    Phys Med Biol; 2008 Apr; 53(7):1909-20. PubMed ID: 18364546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles.
    Martínez-Rovira I; Prezado Y
    Med Phys; 2015 Nov; 42(11):6703-10. PubMed ID: 26520760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gadolinium dose enhancement studies in microbeam radiation therapy.
    Prezado Y; Fois G; Le Duc G; Bravin A
    Med Phys; 2009 Aug; 36(8):3568-74. PubMed ID: 19746791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumour dose enhancement using modified megavoltage photon beams and contrast media.
    Robar JL; Riccio SA; Martin MA
    Phys Med Biol; 2002 Jul; 47(14):2433-49. PubMed ID: 12171332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo feasibility study of orthogonal bremsstrahlung beams for improved radiation therapy imaging.
    Jabbari K; Sarfehnia A; Podgorsak EB; Seuntjens JP
    Phys Med Biol; 2007 Feb; 52(4):1171-84. PubMed ID: 17264378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system.
    Lehmann J; Hartmann Siantar C; Wessol DE; Wemple CA; Nigg D; Cogliati J; Daly T; Descalle MA; Flickinger T; Pletcher D; Denardo G
    Phys Med Biol; 2005 Mar; 50(5):947-58. PubMed ID: 15798267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-factor calculations for mouse models using Monte-Carlo simulations.
    Bitar A; Lisbona A; Bardiès M
    Q J Nucl Med Mol Imaging; 2007 Dec; 51(4):343-51. PubMed ID: 17538523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of MINERVA Monte Carlo simulations to targeted radionuclide therapy.
    Descalle MA; Hartmann Siantar CL; Dauffy L; Nigg DW; Wemple CA; Yuan A; DeNardo GL
    Cancer Biother Radiopharm; 2003 Feb; 18(1):71-9. PubMed ID: 12667310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy.
    Autret D; Bitar A; Ferrer L; Lisbona A; Bardiès M
    Cancer Biother Radiopharm; 2005 Feb; 20(1):77-84. PubMed ID: 15778585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo study of the influence of energy spectra, mesh size, high Z element on dose and PVDR based on 1-D and 3-D heterogeneous mouse head phantom for Microbeam Radiation Therapy.
    Lin H; Jing J; Xu L; Mao X
    Phys Med; 2017 Dec; 44():96-107. PubMed ID: 28947187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique.
    Kakade NR; Sharma SD
    J Cancer Res Ther; 2015; 11(1):94-7. PubMed ID: 25879344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose enhancement through combining internalizing radiation and contrast media.
    Dinkelborg LM; Bugaj JE
    Cancer Biother Radiopharm; 2006 Jun; 21(3):173-4. PubMed ID: 16918292
    [No Abstract]   [Full Text] [Related]  

  • 19. Influence of concentration, nanoparticle size, beam energy, and material on dose enhancement in radiation therapy.
    Hwang C; Kim JM; Kim J
    J Radiat Res; 2017 Jul; 58(4):405-411. PubMed ID: 28419319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of gold nanoparticles on radiation doses in tumor treatment: a Monte Carlo study.
    Al-Musywel HA; Laref A
    Lasers Med Sci; 2017 Dec; 32(9):2073-2080. PubMed ID: 28948388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.