These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16918548)

  • 1. Photosynthesis within isobilateral Eucalyptus pauciflora leaves.
    Evans JR; Vogelmann TC
    New Phytol; 2006; 171(4):771-82. PubMed ID: 16918548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of juvenile and adult leaves of Eucalyptus globulus showing distinct heteroblastic development: photosynthesis and volatile isoprenoids.
    Velikova V; Loreto F; Brilli F; Stefanov D; Yordanov I
    Plant Biol (Stuttg); 2008 Jan; 10(1):55-64. PubMed ID: 18211547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential errors in electron transport rates calculated from chlorophyll fluorescence as revealed by a multilayer leaf model.
    Evans JR
    Plant Cell Physiol; 2009 Apr; 50(4):698-706. PubMed ID: 19282373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks.
    Campany CE; Tjoelker MG; von Caemmerer S; Duursma RA
    Plant Cell Environ; 2016 Dec; 39(12):2762-2773. PubMed ID: 27726150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased photosynthesis following partial defoliation of field-grown Eucalyptus globulus seedlings is not caused by increased leaf nitrogen.
    Turnbull TL; Adams MA; Warren CR
    Tree Physiol; 2007 Oct; 27(10):1481-92. PubMed ID: 17669738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertical, horizontal and azimuthal variations in leaf photosynthetic characteristics within a Fagus crenata crown in relation to light acclimation.
    Iio A; Fukasawa H; Nose Y; Kato S; Kakubari Y
    Tree Physiol; 2005 May; 25(5):533-44. PubMed ID: 15741146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis of Eucalyptus globulus with Mycosphaerella leaf disease.
    Pinkard EA; Mohammed CL
    New Phytol; 2006; 170(1):119-27. PubMed ID: 16539609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthesis and resource distribution through plant canopies.
    Niinemets U
    Plant Cell Environ; 2007 Sep; 30(9):1052-71. PubMed ID: 17661747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy.
    Mänd P; Hallik L; Peñuelas J; Kull O
    Tree Physiol; 2013 Feb; 33(2):202-10. PubMed ID: 23185067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variegation in Arum italicum leaves. A structural-functional study.
    La Rocca N; Rascio N; Pupillo P
    Plant Physiol Biochem; 2011 Dec; 49(12):1392-8. PubMed ID: 22078376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Within-canopy nitrogen and photosynthetic gradients are unaffected by soil fertility in field-grown Eucalyptus globulus.
    Turnbull TL; Kelly N; Adams MA; Warren CR
    Tree Physiol; 2007 Nov; 27(11):1607-17. PubMed ID: 17669750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna.
    Cernusak LA; Hutley LB; Beringer J; Tapper NJ
    Plant Cell Environ; 2006 Apr; 29(4):632-46. PubMed ID: 17080613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why abaxial illumination limits photosynthetic carbon fixation in spinach leaves.
    Sun J; Nishio J
    Plant Cell Physiol; 2001 Jan; 42(1):1-8. PubMed ID: 11158438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogenetic differences in mesophyll structure and chlorophyll distribution in Eucalyptus globulus ssp. globulus.
    James SA; Smith WK; Vogelmann TC
    Am J Bot; 1999 Feb; 86(2):198-207. PubMed ID: 21680359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature.
    Xu CY; Salih A; Ghannoum O; Tissue DT
    J Exp Bot; 2012 Oct; 63(16):5829-41. PubMed ID: 22915750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of corticular photosynthesis following defoliation in Eucalyptus globulus.
    Eyles A; Pinkard EA; O'Grady AP; Worledge D; Warren CR
    Plant Cell Environ; 2009 Aug; 32(8):1004-14. PubMed ID: 19344333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpressing the HD-Zip class II transcription factor EcHB1 from Eucalyptus camaldulensis increased the leaf photosynthesis and drought tolerance of Eucalyptus.
    Sasaki K; Ida Y; Kitajima S; Kawazu T; Hibino T; Hanba YT
    Sci Rep; 2019 Oct; 9(1):14121. PubMed ID: 31575941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.
    Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA
    J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf water content and palisade cell size.
    Canny MJ; Huang CX
    New Phytol; 2006; 170(1):75-85. PubMed ID: 16539605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic and structural acclimation to light direction in vertical leaves of Silphium terebinthinaceum.
    Poulson ME; DeLucia EH
    Oecologia; 1993 Sep; 95(3):393-400. PubMed ID: 28314016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.