These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 16919233)
1. The ADP-glucose binding site of the Escherichia coli glycogen synthase. Yep A; Ballicora MA; Preiss J Arch Biochem Biophys; 2006 Sep; 453(2):188-96. PubMed ID: 16919233 [TBL] [Abstract][Full Text] [Related]
2. The active site of the Escherichia coli glycogen synthase is similar to the active site of retaining GT-B glycosyltransferases. Yep A; Ballicora MA; Preiss J Biochem Biophys Res Commun; 2004 Apr; 316(3):960-6. PubMed ID: 15033495 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of a critical region in the glycogen synthase from Escherichia coli. Yep A; Ballicora MA; Sivak MN; Preiss J J Biol Chem; 2004 Feb; 279(9):8359-67. PubMed ID: 14665620 [TBL] [Abstract][Full Text] [Related]
4. Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose. Grizot S; Salem M; Vongsouthi V; Durand L; Moreau F; Dohi H; Vincent S; Escaich S; Ducruix A J Mol Biol; 2006 Oct; 363(2):383-94. PubMed ID: 16963083 [TBL] [Abstract][Full Text] [Related]
5. Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase. Larivière L; Sommer N; Moréra S J Mol Biol; 2005 Sep; 352(1):139-50. PubMed ID: 16081100 [TBL] [Abstract][Full Text] [Related]
6. Discovery of the archaeal chemical link between glycogen (starch) synthase families using a new mass spectrometry assay. Zea CJ; MacDonell SW; Pohl NL J Am Chem Soc; 2003 Nov; 125(45):13666-7. PubMed ID: 14599197 [TBL] [Abstract][Full Text] [Related]
8. Role of the conserved Lys-X-Gly-Gly sequence at the ADP-glucose-binding site in Escherichia coli glycogen synthase. Furukawa K; Tagaya M; Tanizawa K; Fukui T J Biol Chem; 1993 Nov; 268(32):23837-42. PubMed ID: 8226921 [TBL] [Abstract][Full Text] [Related]
9. Lyase activity of glycogen synthase: Is an elimination/addition mechanism a possible reaction pathway for retaining glycosyltransferases? Díaz A; Díaz-Lobo M; Grados E; Guinovart JJ; Fita I; Ferrer JC IUBMB Life; 2012 Jul; 64(7):649-58. PubMed ID: 22648728 [TBL] [Abstract][Full Text] [Related]
10. Mutation of UDP-glucose binding motif residues lead to increased affinity for ADP-glucose in sugarcane sucrose phosphate synthase. Kurniah NI; Sawitri WD; Rohman MS; Nugraha Y; Hase T; Sugiharto B Mol Biol Rep; 2021 Feb; 48(2):1697-1706. PubMed ID: 33528727 [TBL] [Abstract][Full Text] [Related]
11. The crystal structures of the open and catalytically competent closed conformation of Escherichia coli glycogen synthase. Sheng F; Jia X; Yep A; Preiss J; Geiger JH J Biol Chem; 2009 Jun; 284(26):17796-807. PubMed ID: 19244233 [TBL] [Abstract][Full Text] [Related]
12. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of an archaeal glycogen synthase: insights into oligomerization and substrate binding of eukaryotic glycogen synthases. Horcajada C; Guinovart JJ; Fita I; Ferrer JC J Biol Chem; 2006 Feb; 281(5):2923-31. PubMed ID: 16319074 [TBL] [Abstract][Full Text] [Related]
14. De novo synthesis of bacterial glycogen: Agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Ugalde JE; Parodi AJ; Ugalde RA Proc Natl Acad Sci U S A; 2003 Sep; 100(19):10659-63. PubMed ID: 12960388 [TBL] [Abstract][Full Text] [Related]
15. Role of the amino acid invariants in the active site of MurG as evaluated by site-directed mutagenesis. Crouvoisier M; Auger G; Blanot D; Mengin-Lecreulx D Biochimie; 2007 Dec; 89(12):1498-508. PubMed ID: 17692452 [TBL] [Abstract][Full Text] [Related]
16. Identification of Lys277 at the active site of Escherichia coli glycogen synthase. Application of affinity labeling combined with site-directed mutagenesis. Furukawa K; Tagaya M; Tanizawa K; Fukui T J Biol Chem; 1994 Jan; 269(2):868-71. PubMed ID: 8288640 [TBL] [Abstract][Full Text] [Related]
17. Molecular architecture of the glucose 1-phosphate site in ADP-glucose pyrophosphorylases. Bejar CM; Jin X; Ballicora MA; Preiss J J Biol Chem; 2006 Dec; 281(52):40473-84. PubMed ID: 17079236 [TBL] [Abstract][Full Text] [Related]
18. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Najmanovich R; Kurbatova N; Thornton J Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810 [TBL] [Abstract][Full Text] [Related]
19. Unusual sugar nucleotide recognition elements of mesophilic vs. thermophilic glycogen synthases. Zea CJ; Pohl NL Biopolymers; 2005 Oct; 79(2):106-13. PubMed ID: 16007668 [TBL] [Abstract][Full Text] [Related]
20. Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope. Bowsher CG; Scrase-Field EF; Esposito S; Emes MJ; Tetlow IJ J Exp Bot; 2007; 58(6):1321-32. PubMed ID: 17301030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]