BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 16919598)

  • 1. Role of Asp544 in subunit I for Na(+) pumping by Vitreoscilla cytochrome bo.
    Chung YT; Stark BC; Webster DA
    Biochem Biophys Res Commun; 2006 Oct; 348(4):1209-14. PubMed ID: 16919598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that Na+-pumping occurs through the D-channel in Vitreoscilla cytochrome bo.
    Kim SK; Stark BC; Webster DA
    Biochem Biophys Res Commun; 2005 Jul; 332(2):332-8. PubMed ID: 15910742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+)-translocating cytochrome bo terminal oxidase from Vitreoscilla: some parameters of its Na+ pumping and orientation in synthetic vesicles.
    Park C; Moon JY; Cokic P; Webster DA
    Biochemistry; 1996 Sep; 35(36):11895-900. PubMed ID: 8794772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport.
    Bramkamp M; Altendorf K
    Biochemistry; 2005 Jun; 44(23):8260-6. PubMed ID: 15938615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of cytochrome bo function in Vitreoscilla using a cyo(-) knockout mutant.
    Kim KJ; Chi PY; Hwang KW; Stark BC; Webster DA
    J Biochem; 2000 Jul; 128(1):49-55. PubMed ID: 10876157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proton pumping bo oxidase from Vitreoscilla.
    Graf S; Brzezinski P; von Ballmoos C
    Sci Rep; 2019 Mar; 9(1):4766. PubMed ID: 30886219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitreoscilla hemoglobin aids respiration under hypoxic conditions in its native host.
    Chi PY; Webster DA; Stark BC
    Microbiol Res; 2009; 164(3):267-75. PubMed ID: 17403602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site.
    Borisov VB; Belevich I; Bloch DA; Mogi T; Verkhovsky MI
    Biochemistry; 2008 Jul; 47(30):7907-14. PubMed ID: 18597483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, sequencing, and characterization of the cytochrome bo operon from Vitreoscilla.
    Hwang KW; Kim SK; Kim KJ; Chung YT; Stark BC; Webster DA
    DNA Seq; 2003 Feb; 14(1):53-9. PubMed ID: 12751331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cytochrome that can pump sodium ion.
    Efiok BJ; Webster DA
    Biochem Biophys Res Commun; 1990 Nov; 173(1):370-5. PubMed ID: 2256929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of functional amino acids in the Nramp family by a combination of evolutionary analysis and biophysical studies of metal and proton cotransport in vivo.
    Chaloupka R; Courville P; Veyrier F; Knudsen B; Tompkins TA; Cellier MF
    Biochemistry; 2005 Jan; 44(2):726-33. PubMed ID: 15641799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein.
    Lee DY; Kim KA; Yu YG; Kim KS
    Biochem Biophys Res Commun; 2004 Jul; 320(3):900-6. PubMed ID: 15240133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamates 99 and 107 in transmembrane helix III of subunit I of cytochrome bd are critical for binding of the heme b595-d binuclear center and enzyme activity.
    Mogi T; Endou S; Akimoto S; Morimoto-Tadokoro M; Miyoshi H
    Biochemistry; 2006 Dec; 45(51):15785-92. PubMed ID: 17176101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core formation in Escherichia coli bacterioferritin requires a functional ferroxidase center.
    Baaghil S; Lewin A; Moore GR; Le Brun NE
    Biochemistry; 2003 Dec; 42(47):14047-56. PubMed ID: 14636073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the charged amino acid residues in the cytoplasmic loop between putative transmembrane segments 6 and 7 of Na+-ATPase of an alkaliphilic bacterium, Exiguobacterium aurantiacum.
    Takemura Y; Tamura N; Imamura M; Koyama N
    FEMS Microbiol Lett; 2009 Oct; 299(2):143-8. PubMed ID: 19702882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion analysis of the subunit genes of V-type Na+-ATPase from Enterococcus hirae.
    Hosaka T; Takase K; Murata T; Kakinuma Y; Yamato I
    J Biochem; 2006 Jun; 139(6):1045-52. PubMed ID: 16788055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartic acid 397 in subunit B of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae forms part of a sodium-binding site, is involved in cation selectivity, and affects cation-binding site cooperativity.
    Shea ME; Juárez O; Cho J; Barquera B
    J Biol Chem; 2013 Oct; 288(43):31241-9. PubMed ID: 24030824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the iron status of the ferroxidase center of Escherichia coli bacterioferritin using fluorescence spectroscopy.
    Lawson TL; Crow A; Lewin A; Yasmin S; Moore GR; Le Brun NE
    Biochemistry; 2009 Sep; 48(38):9031-9. PubMed ID: 19705876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Asp-295 in the catalytic mechanism of Leuconostoc mesenteroides sucrose phosphorylase probed with site-directed mutagenesis.
    Mueller M; Nidetzky B
    FEBS Lett; 2007 Apr; 581(7):1403-8. PubMed ID: 17350620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae.
    Bertsova YV; Bogachev AV
    FEBS Lett; 2004 Apr; 563(1-3):207-12. PubMed ID: 15063750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.