These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 16919653)
1. Influence of pore size on the separation of random and block copolymers by interactive liquid chromatography. van Hulst M; Schoenmakers P J Chromatogr A; 2006 Oct; 1130(1):54-63. PubMed ID: 16919653 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive 2-D chromatography of random and block methacrylate copolymers. van Hulst M; van der Horst A; Kok WT; Schoenmakers PJ J Sep Sci; 2010 Jun; 33(10):1414-20. PubMed ID: 20309901 [TBL] [Abstract][Full Text] [Related]
3. Improvement of proteome coverage using hydrophobic monolithic columns in shotgun proteome analysis. Wang F; Dong J; Ye M; Wu R; Zou H J Chromatogr A; 2009 May; 1216(18):3887-94. PubMed ID: 19303076 [TBL] [Abstract][Full Text] [Related]
4. Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p-vinylphenyl))ethane capillary columns. Greiderer A; Trojer L; Huck CW; Bonn GK J Chromatogr A; 2009 Nov; 1216(45):7747-54. PubMed ID: 19762035 [TBL] [Abstract][Full Text] [Related]
5. Simple capillary flow porometer for characterization of capillary columns containing packed and monolithic beds. Fang Y; Tolley HD; Lee ML J Chromatogr A; 2010 Oct; 1217(41):6405-12. PubMed ID: 20810116 [TBL] [Abstract][Full Text] [Related]
6. Pressure-assisted CEC versus CEC using methacrylate-based monolithic columns: influence of the polymerization-mixture composition. Tanret I; Mangelings D; Vander Heyden Y Electrophoresis; 2008 Nov; 29(22):4463-74. PubMed ID: 19035401 [TBL] [Abstract][Full Text] [Related]
7. A study of the effects of column porosity on gradient separations of proteins. Urban J; Jandera P; Kucerová Z; van Straten MA; Claessens HA J Chromatogr A; 2007 Oct; 1167(1):63-75. PubMed ID: 17804002 [TBL] [Abstract][Full Text] [Related]
8. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography. Nischang I; Teasdale I; Brüggemann O J Chromatogr A; 2010 Nov; 1217(48):7514-22. PubMed ID: 20980011 [TBL] [Abstract][Full Text] [Related]
9. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins. Skudas R; Grimes BA; Machtejevas E; Kudirkaite V; Kornysova O; Hennessy TP; Lubda D; Unger KK J Chromatogr A; 2007 Mar; 1144(1):72-84. PubMed ID: 17084406 [TBL] [Abstract][Full Text] [Related]
10. Cross-linker effects on the separation efficiency on (poly)methacrylate capillary monolithic columns. Part II. Aqueous normal-phase liquid chromatography. Staňková M; Jandera P; Škeříková V; Urban J J Chromatogr A; 2013 May; 1289():47-57. PubMed ID: 23570857 [TBL] [Abstract][Full Text] [Related]
11. Critical parameters of liquid chromatography at critical conditions in context of poloxamers: Pore diameter, mobile phase composition, temperature and gradients. Malik MI J Chromatogr A; 2020 Jan; 1609():460440. PubMed ID: 31416625 [TBL] [Abstract][Full Text] [Related]
12. Polymetacrylate and hybrid interparticle monolithic columns for fast separations of proteins by capillary liquid chromatography. Jandera P; Urban J; Moravcová D J Chromatogr A; 2006 Mar; 1109(1):60-73. PubMed ID: 16183070 [TBL] [Abstract][Full Text] [Related]
13. Monolithic poly[(trimethylsilyl-4-methylstyrene)-co- bis(4-vinylbenzyl)dimethylsilane] stationary phases for the fast separation of proteins and oligonucleotides. Jakschitz TA; Huck CW; Lubbad S; Bonn GK J Chromatogr A; 2007 Apr; 1147(1):53-8. PubMed ID: 17350637 [TBL] [Abstract][Full Text] [Related]