BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 16919683)

  • 1. Effects of flufenamic acid on fictive locomotion, plateau potentials, calcium channels and NMDA receptors in the lamprey spinal cord.
    Wang D; Grillner S; Wallén P
    Neuropharmacology; 2006 Nov; 51(6):1038-46. PubMed ID: 16919683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey.
    el Manira A; Tegnér J; Grillner S
    J Neurophysiol; 1994 Oct; 72(4):1852-61. PubMed ID: 7823105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of apamin-sensitive k(ca) channels for reticulospinal synaptic transmission to motoneuron and for the afterhyperpolarization.
    Cangiano L; Wallén P; Grillner S
    J Neurophysiol; 2002 Jul; 88(1):289-99. PubMed ID: 12091554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of cellular and synaptic variability in the lamprey spinal cord.
    Parker D; Bevan S
    J Neurophysiol; 2007 Jan; 97(1):44-56. PubMed ID: 17021027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA enhances a depolarization-activated inward current in subthalamic neurons.
    Zhu ZT; Munhall A; Shen KZ; Johnson SW
    Neuropharmacology; 2005 Sep; 49(3):317-27. PubMed ID: 15993436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-dependent subthreshold oscillations determine bursting activity induced by N-methyl-D-aspartate in rat subthalamic neurons in vitro.
    Zhu ZT; Munhall A; Shen KZ; Johnson SW
    Eur J Neurosci; 2004 Mar; 19(5):1296-304. PubMed ID: 15016087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative investigation of calcium signals for locomotor pattern generation in the lamprey spinal cord.
    Viana di Prisco G; Alford S
    J Neurophysiol; 2004 Sep; 92(3):1796-806. PubMed ID: 15140901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of AMPA receptor desensitization and the side effects of a DMSO vehicle on reticulospinal EPSPs and locomotor activity.
    Tsvyetlynska NA; Hill RH; Grillner S
    J Neurophysiol; 2005 Dec; 94(6):3951-60. PubMed ID: 16107533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flufenamic acid suppresses epileptiform activity in hippocampus by reducing excitatory synaptic transmission and neuronal excitability.
    Fernández M; Lao-Peregrín C; Martín ED
    Epilepsia; 2010 Mar; 51(3):384-90. PubMed ID: 19732136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous release of 5-HT modulates the plateau phase of NMDA-induced membrane potential oscillations in lamprey spinal neurons.
    Wang D; Grillner S; Wallén P
    J Neurophysiol; 2014 Jul; 112(1):30-8. PubMed ID: 24740857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a high-voltage-activated IA current with a role in spike timing and locomotor pattern generation.
    Hess D; El Manira A
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5276-81. PubMed ID: 11309504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons.
    Vatanparast J; Janahmadi M
    Brain Res; 2009 Feb; 1255():57-66. PubMed ID: 19100724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [NMDA-Induced oscillations of membrane potential in isolated spinal neurons from lamprey, Lampetra fluviatilis].
    Batueva IV; Buchanan JT; Veselkin NP; Tsvetkov EA
    Zh Evol Biokhim Fiziol; 1998; 34(4):407-18. PubMed ID: 9859180
    [No Abstract]   [Full Text] [Related]  

  • 17. Apamin blocks the slow AHP in lamprey and delays termination of locomotor bursts.
    Hill R; Matsushima T; Schotland J; Grillner S
    Neuroreport; 1992 Oct; 3(10):943-5. PubMed ID: 1421104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular mechanisms underlying the rhythmic bursts induced by NMDA microiontophoresis at the apical dendrites of CA1 pyramidal neurons.
    Bonansco C; Buño W
    Hippocampus; 2003; 13(1):150-63. PubMed ID: 12625465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming.
    Martin MM
    J Neurophysiol; 2002 Nov; 88(5):2463-76. PubMed ID: 12424286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2004; 126(2):511-20. PubMed ID: 15207368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.