BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16919720)

  • 1. A citric acid-based hydroxyapatite composite for orthopedic implants.
    Qiu H; Yang J; Kodali P; Koh J; Ameer GA
    Biomaterials; 2006 Dec; 27(34):5845-54. PubMed ID: 16919720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants.
    Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L
    J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of hydroxyapatite in citric acid-based nanocomposites: surface characteristics, degradation, and osteogenicity in vitro.
    Chung EJ; Sugimoto MJ; Ameer GA
    Acta Biomater; 2011 Nov; 7(11):4057-63. PubMed ID: 21784176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical-physical characterization and in vitro preliminary biological assessment of hyaluronic acid benzyl ester-hydroxyapatite composite.
    Giordano C; Sanginario V; Ambrosio L; Silvio LD; Santin M
    J Biomater Appl; 2006 Jan; 20(3):237-52. PubMed ID: 16364964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair.
    Cui Y; Liu Y; Cui Y; Jing X; Zhang P; Chen X
    Acta Biomater; 2009 Sep; 5(7):2680-92. PubMed ID: 19376759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early tissue response to citric acid-based micro- and nanocomposites.
    Chung EJ; Qiu H; Kodali P; Yang S; Sprague SM; Hwong J; Koh J; Ameer GA
    J Biomed Mater Res A; 2011 Jan; 96(1):29-37. PubMed ID: 20949482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites.
    Evis Z; Sato M; Webster TJ
    J Biomed Mater Res A; 2006 Sep; 78(3):500-7. PubMed ID: 16736481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro osteoblastic response to 30 vol% hydroxyapatite-polyethylene composite.
    Zhang Y; Tanner KE; Gurav N; Di Silvio L
    J Biomed Mater Res A; 2007 May; 81(2):409-17. PubMed ID: 17117474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method.
    Ning C; Zhou Y
    Acta Biomater; 2008 Nov; 4(6):1944-52. PubMed ID: 18502711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering.
    Katti KS; Katti DR; Dash R
    Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of elemental microanalysis for estimation of osteoinduction and osteoconduction of hydroxyapatite bone implants].
    Dawidowicz A; Pielka S; Paluch D; Kuryszko J; Staniszewska-Kuś J; Solski L
    Polim Med; 2005; 35(1):3-14. PubMed ID: 16050072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast adhesion on novel machinable calcium phosphate/lanthanum phosphate composites for orthopedic applications.
    Ergun C; Liu H; Webster TJ
    J Biomed Mater Res A; 2009 Jun; 89(3):727-33. PubMed ID: 18464257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites.
    Wong KL; Wong CT; Liu WC; Pan HB; Fong MK; Lam WM; Cheung WL; Tang WM; Chiu KY; Luk KD; Lu WW
    Biomaterials; 2009 Aug; 30(23-24):3810-7. PubMed ID: 19427032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro characterization and mechanical properties of β-calcium silicate/POC composite as a bone fixation device.
    Shirazi FS; Moghaddam E; Mehrali M; Oshkour AA; Metselaar HS; Kadri NA; Zandi K; Abu NA
    J Biomed Mater Res A; 2014 Nov; 102(11):3973-85. PubMed ID: 24376053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration.
    Sun D; Chen Y; Tran RT; Xu S; Xie D; Jia C; Wang Y; Guo Y; Zhang Z; Guo J; Yang J; Jin D; Bai X
    Sci Rep; 2014 Nov; 4():6912. PubMed ID: 25372769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells.
    Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S
    J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.
    Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X
    J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.